Rabu, 25 Mei 2011

nikel

Nikel merupakan kation yang memiliki mobilitas terbatas sehingga dalam proses pelapukan nikel tidak tercuci melainkan mengalami proses pengkayaan. Pengkayaan yang dialami nikel adalah pengkayaan relative, artinya persentase nikel bertambah bukan karena adanya penambahan unsure Ni melainkan kerena berkurangnya unsure lain akibat proses pencucian.
Nikel mengalami peningkatan persentase yang paling besar dibandingkan Fe dan Co karena nikel terdapa dalam jaringan mineral olivine dan piroksen sehingga ketika terjadi pelapukan unsure Ni lebih banyak dibandingkan Fe dan Co.

Proses Pembentukan Nikel
Deposit nikel di alam ada dua jenis yaitu konsentrasi residual nikel silica hasil pelapukan batuan beku ultrabasa yang sering disebut endapan nikel laterit dan deposit nikel sulfide – nikel tembaga yang terbentuk akibat injeksi magma ataupun oleh replacement ( jonsen dan Bateman, 1981)
Genesa Endapan Nikel Akibat Replacement
Unsure logam Ni dan Co sebagai penyusun utama magma basa hadir dalam Kristal olivine dan enstatite karena adanya kesamaan jari-jari ion (Ni= 0,78 A dan Co = 0,82 A) dengan jari-jari mg dan Fe sehingga Ni dan Co dapat bertukar (proses replacement) dengan Mgf dan Fe pada jaringan mineral asli. Ni dan Co menjadi bagian yang tak terpisahkan dalam batuan peridotit, dimana dalam keadaan segar mengandung Ni sebesar 0,1% sampai 0,3 % ( Prijono, 1977)

Genesa Endapan Nikel Laterit
Tubuh endapan nikel laterit terbentuk setelah tubuh batuan beku tersingkap di permukaan dan mengalami pelapukan secara terus – menerus yang mengakibatkan batuan menjadi
Batuan induk bijih nikel adalah batuan peridotit. Menurut Vinogradov batuan ultra basa rata-rata mempunyai kandungan nikel sebesar 0,2 %. Unsur nikel tersebut terdapat dalam kisi-kisi kristal mineral olivin dan piroksin, sebagai hasil substitusi terhadap atom Fe dan Mg. Proses terjadinya substitusi antara Ni, Fe dan Mg dapat diterangkan karena radius ion dan muatan ion yang hampir bersamaan di antara unsur-unsur tersebut. Proses serpentinisasi yang terjadi pada batuan peridotit akibat pengaruh larutan hydrothermal, akan merubah batuan peridotit menjadi batuan serpentinit atau batuan serpentinit peroditit. Sedangkan proses kimia dan fisika dari udara, air serta pergantian panas dingin yang bekerja kontinu, menyebabkan disintegrasi dan dekomposisi pada batuan induk.
Pada pelapukan kimia khususnya, air tanah yang kaya akan CO2 berasal dari udara dan pembusukan tumbuh-tumbuhan menguraikan mineral-mineral yang tidak stabil (olivin dan piroksin) pada batuan ultra basa, menghasilkan Mg, Fe, Ni yang larut; Si cenderung membentuk koloid dari partikel-partikel silika yang sangat halus. Didalam larutan, Fe teroksidasi dan mengendap sebagai ferri-hydroksida, akhirnya membentuk mineral-mineral seperti geothit, limonit, dan haematit dekat permukaan. Bersama mineral-mineral ini selalu ikut serta unsur cobalt dalam jumlah kecil.
Larutan yang mengandung Mg, Ni, dan Si terus menerus kebawah selama larutannya bersifat asam, hingga pada suatu kondisi dimana suasana cukup netral akibat adanya kontak dengan tanah dan batuan, maka ada kecenderungan untuk membentuk endapan hydrosilikat. Nikel yang terkandung dalam rantai silikat atau hydrosilikat dengan komposisi yang mungkin bervariasi tersebut akan mengendap pada celah-celah atau rekahan-rekahan yang dikenal dengan urat-urat garnierit dan krisopras. Sedangkan larutan residunya akan membentuk suatu senyawa yang disebut saprolit yang berwarna coklat kuning kemerahan. Unsur-unsur lainnya seperti Ca dan Mg yang terlarut sebagai bikarbonat akan terbawa kebawah sampai batas pelapukan dan akan diendapkan sebagai dolomit, magnesit yang biasa mengisi celah-celah atau rekahan-rekahan pada batuan induk. Dilapangan urat-urat ini dikenal sebagai batas petunjuk antara zona pelapukan dengan zona batuan segar yang disebut dengan akar pelapukan (root of weathering).

kasian

negara apa ini.........????
bangsa dengan anak kecil yang punya cita2 aneh
saya mau jadi seperti aril, ian kasela, ahmad dani dll
kalau saya mau jadi seperti bcl, yuni shara, julia peres, atau apa dan segala macamnya

bangsa yang calon penerusnya dirusak oleh orang tuanya sendiri.....
baim, umai, amel ?????? mau jadi apa????

setiap hari yang dipertonntonkan cuma acara2 itu saja disetiap stasiun tv
coba lihat,,,,
adek2 kita yang juara umum olimpiade sains sedunia cuma diberitakan satu kali dala tv
terus.......... hubungan anang dan sahrini, kd dan raul lemos... 3 kali sehari dalam satu stasiun tv.....
itupun dari satu bulan yang lalu....

negara yang diperintah oleh konco dari orang2 bedebah terbaik didunia.....
yang rakyatnya makan dari mengais sampah,,,
sementara beliau2 para bedebah yang telah makan uang negara hanya beralasan saya kena amnesia.....

coba tanya anak2mu????
ada yang kenal, kertini, cut nyak dien, antasari, hasanuddin , bung tomo, patimura, kahar mujakar atau nasution????
jawabanya tidak....... tau
kalau ditanya baim wong, afgan, dan cita laura...
dijawab sampai hari ulang tahunya, pacarnya dulu dan baju warna apa yang dia pake hari ini....

dulu lagunya tanah ini tanah surga.........
tidak,,,,,itu tidak salah...
yang salah adalah:tuhan yang telah membiarkan setan2 berwajah manusia hidup di tanah surga ini

BUMI

Sebenarnya hingga sekarang pengetahuan tentang struktur dan komposisi Bumi belum dapat dipecahkan dengan penyelidikan langsung. Salah satu cara langsung untuk mengetahui informasi tentang struktur dan komposisi Bumi adalah pemboran. Namun, pemboran yang paling dalam yang dapat dilakukan selama ini hanya sampai pada kedalaman 7 km. Karena keterbatasan tesebut, maka digunakan sifat – sifat atau hukum fisika seperti gravitasi, perambatan gelombang, kelistrikan dan fenomena lainnya yang berkaitan dengan sifat – sifat Bumi.
Berdasarkan hasil analisis data – data yang diperoleh, secara fisika dan kimiawi interior Bumi dapat dibagi ke dalam dua bagian yaitu:
1. lapisan Bumi berdasarkan chemical properties ( Sifat – Sifat Kimia )
2. lapisan Bumi berdasarkan physical properties ( Sifat – Sifat Fisika )

Berdasarkan sifat – sifat kimia, lapisan Bumi dapat dibagi menjadi :

1. Crust (Kerak Bumi), merupakan bagian terluar Bumi, memiliki komposisi dan ketebalan berbeda dan beragam dari satu tempat ke tempat lain. Tebal kerak Bumi sekitar 70 km. Bagian atas kerak Bumi disebut lapisan SiAL yang penyusun utamanya berupa oksigen, silika, dan alumunium, sedangkan lapisan bawahnya terdiri atas lapisan SIMA, mineral utama yang dikandungnya adalah Silika dan Amagnesium. Terdapat dua jenis kerak Bumi:
a. Continental Crust (Kerak Benua), tebalnya 10 – 70 km, terdiri dari batuan yang ringan mengandung banyak silika (SiO2). Terdiri dari batuan kristalin dengan unsur – unsur Si (silika) dan Al (aluminium).
b. Oceanic Crust (Kerak Samudra), ketebalannya 8 – 13 km, terdiri dari batuan yang sangat padat, berwarna gelap, tersusun dari unsur Si (silika) dan Mg (magnesium).

2. Mantle ( Mantel ), merupakan lapisan di bawah kerak Bumi, dicirikan oleh adanya peningkatan gelombang – gelombang panas, memiliki ketebalan 3.488 km. Pada lapisan ini bersifat semi cair, banyak mengandung mineral dan ferromagnesian (campuran besi dan magnesium). Mantel dapat dibagi menjadi 2 bagian:
a. Upper Mantle (mantel bagian atas), memiliki ketebalan 400 km, bersifat plastis (padat tapi kenyal) atau semiplastis, mempunyai zona transisi dengan ketebalan 670 km.
b. Lower Mantle (mantel bagian bawah), terdiri dari bahan yang kaya unsur nikel dan besi, berada pada kedalaman antara 1000 – 2900 km.

3. Core ( Inti ), terletak di bawah mantel Bumi pada kedalaman 2.900 – 6730 km, tersusun atas besi (Fe) dan Nikel (Ni), yang datanya diketahui dari gelombang seismik, eksperimen, dan komposisi iron meteorites ( besi meteorit ). Inti Bumi dapat dibagi menjadi 2, yaitu :
a. Inti luar , kedalaman 2900 – 5100 km tersusun oleh komposisi silika, belerang dan O2 bersifat cair.
b. Inti dalam, kedalaman 5100 – 6730 km. Komposisi besi padat (Fe) dan nikel (Ni) bersifat padat.

Berdasarkan sifat – sifat fisikanya, lapisan Bumi dapat dibagi menjadi:
1. Lithosphere, merupakan lapisan yang terdiri dari crust & upper mantle, dan berada di kedalaman 0-60 km.

2. Asthenosphere, merupakan lapisan plastis yang memiliki kepadatan rendah dan berada di antara upper mantle dan lower mantle.

3. Upper mantle, merupakan lapisan luar dari mantel dan suhunya lebih rendah dibandingkan lower mantle. Berada di kedalaman 35-660 km.

4. Lower mantle, merupakan lapisan dalam mantel yang memiliki suhu lebih panas yang disebabkan oleh panas ekstrim yang berasal dari inner core. Berada di kedalaman 660-2890 km.

5. Inti Luar (Outer Core), berupa fase cair berada di kedalaman 2890-5150 km, kaya akan unsur besi (Fe) dan nikel (Ni).

6. Inti Dalam (Inner Core), walaupun bersuhu ekstrim tetapi berupa fase padat yang disebabkan oleh tekanan yang sangat tinggi. Berada di kedalaman 5150-6360 km dan juga kaya akan unsur besi dan nikel.

vulcano

APA ITU GUNUNGAPI?

Gunungapi adalah lubang kepundan atau rekahan dalam kerak bumi tempat keluarnya cairan magma atau gas atau cairan lainnya ke permukaan bumi. Matrial yang dierupsikan ke permukaan bumi umumnya membentuk kerucut terpancung. Dapat juga didefinisikan sebagai suatu sistem saluran fluida panas (batuan dalam wujud cair atau lava) yang memanjang dari kedalaman sekitar 10 km di bawah permukaan bumi sampai ke permukaan bumi, termasuk endapan hasil akumulasi material yang dikeluarkan pada saat dia meletus.

Gunungapi diklasifikasikan ke dalam dua sumber erupsi, yaitu:
  1. Erupsi pusat, erupsi keluar melalui kawah utama;
  2. Erupsi samping, erupsi keluar dari lereng tubuhnya;
  3. Erupsi celah, erupsi yang muncul pada retakan/sesar dapat memanjang sampai beberapa kilometer;
  4. Erupsi eksentrik, erupsi samping tetapi magma yang keluar bukan dari kepundan pusat yang menyimpang ke samping melainkan langsung dari dapur magma melalui kepundan tersendiri.

Berdasarkan tinggi rendahnya derajat fragmentasi dan luasnya, juga kuat lemahnya letusan serta tinggi tiang asap, maka gunungapi dibagi menjadi beberapa tipe erupsi:
  1. Tipe Hawaiian, yaitu erupsi eksplosif dari magma basaltic atau mendekati basalt, umumnya berupa semburan lava pijar, dan sering diikuti leleran lava secara simultan, terjadi pada celah atau kepundan sederhana;
  2. Tipe Strombolian, erupsinya hampir sama dengan Hawaiian berupa semburan lava pijar dari magma yang dangkal, umumnya terjadi pada gunungapi sering aktif di tepi benua atau di tengah benua;
  3. Tipe Plinian, merupakan erupsi yang sangat ekslposif dari magma berviskositas tinggi atau magma asam, komposisi magma bersifat andesitik sampai riolitik. Material yang dierupsikan berupa batu apung dalam jumlah besar;
  4. Tipe Sub Plinian, erupsi eksplosif dari magma asam/riolitik dari gunungapi strato, tahap erupsi efusifnya menghasilkan kubah lava riolitik. Erupsi subplinian dapat menghasilkan pembentukan ignimbrit;
  5. Tipe Ultra Plinian, erupsi sangat eksplosif menghasilkan endapan batuapung lebih banyak dan luas dari Plinian biasa;
  6. Tipe Vulkanian, erupsi magmatis berkomposisi andesit basaltic sampai dasit, umumnya melontarkan bom-bom vulkanik atau bongkahan di sekitar kawah dan sering disertai bom kerak-roti atau permukaannya retak-retak. Material yang dierupsikan tidak melulu berasal dari magma tetapi bercampur dengan batuan samping berupa litik;
  7. Tipe Surtseyan dan Tipe Freatoplinian, kedua tipe tersebut merupakan erupsi yang terjadi pada pulau gunungapi, gunungapi bawah laut atau gunungapi yang berdanau kawah. Surtseyan merupakan erupsi interaksi antara magma basaltic dengan air permukaan atau bawah permukaan, letusannya disebut freatomagmatik. Freatoplinian kejadiannya sama dengan Surtseyan, tetapi magma yang berinteraksi dengan air berkomposisi riolitik.


Tipe Letusan Gunungapi

Bentuk dan bentang alam gunungapi, terdiri atas:
  • Bentuk kerucut, dibentuk oleh endapan piroklastik atau lava atau keduanya;
  • Bentuk kubah, dibentuk oleh terobosan lava di kawah, membentuk seperti kubah;
  • Kerucut sinder, dibentuk oleh perlapisan material sinder atau skoria;
  • Maar, biasanya terbentuk pada lereng atau kaki gunungapi utama akibat letusan freatik atau freatomagmatik;
  • Plateau, dataran tinggi yang dibentuk oleh pelamparan leleran lava.


Penampang suatu gunungapi dan bagian-bagiannya

Struktur gunungapi, terdiri atas:
  1. Struktur kawah adalah bentuk morfologi negatif ataudepresi akibat kegiatan suatu gunungapi, bentuknya relatif bundar;
  2. Kaldera, bentukmorfologinya seperti kawah tetapi garis tengahnya lebih dari 2 km. Kaldera terdiri atas : kalderaletusan, terjadi akibat letusan besar yang melontarkan sebagian besar tubuhnya; kalderaruntuhan, terjadi karena runtuhnya sebagian tubuh gunungapi akibat pengeluaran material yangsangat banyak dari dapur magma; kaldera resurgent, terjadi akibat runtuhnya sebagian tubuhgunungapi diikuti dengan runtuhnya blok bagian tengah; kaldera erosi, terjadi akibat erosi terusmenerus pada dinding kawah sehingga melebar menjadi kaldera;
  3. Rekahan dan graben, retaka-retakan atau patahan pada tubuh gunungapi yang memanjang mencapai puluhankilometer dan dalamnya ribuan meter. Rekahan parallel yang mengakibatkan amblasnya blok diantara rekahan disebut graben;
  4. Depresi volkano-tektonik, pembentukannya ditandai dengan deretan pegunungan yang berasosiasi dengan pemebentukan gunungapi akibat ekspansi volumebesar magma asam ke permukaan yang berasal dari kerak bumi. Depresi ini dapat mencapaiukuran puluhan kilometer dengan kedalaman ribuan meter.

Tipe-tipe gunung api berdasarkan bentuknya (morfologi):
  1. Stratovolcano, Tersusun dari batuan hasil letusan dengan tipe letusan berubah-ubah sehingga dapat menghasilkan susunan yang berlapis-lapis dari beberapa jenis batuan, sehingga membentuk suatu kerucut besar (raksasa), terkadang bentuknya tidak beraturan, karena letusan terjadi sudah beberapa ratus kali.
  2. Perisai, Tersusun dari batuan aliran lava yang pada saat diendapkan masih cair, sehingga tidak sempat membentuk suatu kerucut yang tinggi (curam), bentuknya akan berlereng landai, dan susunannya terdiri dari batuan yang bersifat basaltik. Contoh bentuk gunung berapi ini terdapat di kepulauan Hawai.
  3. Cinder Cone, Merupakan gunung berapi yang abu dan pecahan kecil batuan vulkanik menyebar di sekeliling gunung. Sebagian besar gunung jenis ini membentuk mangkuk di puncaknya. Jarang yang tingginya di atas 500 meter dari tanah di sekitarnya.
  4. Kaldera, Gunung berapi jenis ini terbentuk dari ledakan yang sangat kuat yang melempar ujung atas gunung sehingga membentuk cekungan. Gunung Bromo merupakan jenis ini.


Bentuk Gunungapi


KAPAN GUNUNGAPI TERJADI? Gunungapi terbentuk sejak jutaan tahun lalu hingga sekarang. Pengetahuan tentang gunungapiberawal dari perilaku manusia dan manusia purba yang mempunyai hubungan dekat dengan gunungapi. Hal tersebut diketahui dari penemuan fosil manusia di dalam endapan vulkanik dansebagian besar penemuan fosil itu ditemukan di Afrika dan Indonesia berupa tulang belulangmanusia yang terkubur oleh endapan vulkanik.

Sebagai contoh banyak ditemukan kerangka manusia di kota Pompeii dan Herculanum yangterkubur oleh endapan letusan G. Vesuvius pada 79 Masehi. Fosil yang terawetkan baik padaabu vulkanik berupa tapak kaki manusia Australopithecus berumur 3,7 juta tahun di daerahLaetoli, Afrika Timur. Penanggalan fosil dari kerangka manusia tertua, Homo babilisberdasarkan potassium-argon (K-Ar) didapat umur 1,75 juta tahun di daerah Olduvai.Penemuan fosil yang diduga sebagai manusia pemula Australopithecus afarensis berumur 3,5juta tahun di Hadar, Ethiopia, dan penanggalan umur benda purbakala tertua yang terbuat darilava berumur 2,5 juta tahun ditemukan di Danau Turkana, Afrika Timur. Perkembangan benda-benda purba dari yang sederhana kemudian meningkat menjadi benda-benda yang disesuaikan dengan kebutuhan sehari-hari, seperti pemotong, kapak tangan dan lainnya, terbuat dariobsidian yang berumur Paleolitik Atas.

DIMANA GUNUNGAPI TERJADI? Gunungapi terbentuk pada empat busur, yaitu busur tengah benua, terbentuk akibat pemekarankerak benua; busur tepi benua, terbentuk akibat penunjaman kerak samudara ke kerak benua;busur tengah samudera, terjadi akibat pemekaran kerak samudera; dan busur dasar samuderayang terjadi akibat terobosan magma basa pada penipisan kerak samudera.


Penampang yang memperlihat kan batas lempeng utama dengan dengan pembentukan busur gunungapi

MENGAPA TERJADI GUNUNGAPI? Pengetahuan tentang tektonik lempeng merupakan pemecahan awal dari teka-teki fenomena alam termasuk deretan pegunungan, benua, gempabumi dan gunungapi. Planet bumi mepunyai banyak cairan dan air di permukaan. Kedua factor tersebut sangat mempengaruhi pembentukan dan komposisi magma serta lokasi dan kejadian gunungapi.

Panas bagian dalam bumi merupakan panas yang dibentuk selama pembentukan bumi sekitar 4,5 miliar tahun lalu, bersamaan dengan panas yang timbul dari unsure radioaktif alami, seperti elemen-elemen isotop K, U dan Th terhadap waktu. Bumi pada saat terbentuk lebih panas, tetapi kemudian mendingin secara berangsur sesuai dengan perkembangan sejarahnya. Pendinginan tersebut terjadi akibat pelepasan panas dan intensitas vulkanisma di permukaan. Perambatan panas dari dalam bumi ke permukaan berupa konveksi, dimana material-material yang terpanaskan pada dasar mantel, kedalaman 2.900 km di bawah muka bumi bergerak menyebar dan menyempit disekitarnya. Pada bagian atas mantel, sekitar 7 35 km di bawah muka bumi, material-material tersebut mendingin dan menjadi padat, kemudian tenggelam lagi ke dalam aliran konveksi tersebut. Litosfir termasuk juga kerak umumnya mempunyai ketebalan 70 120 km dan terpecah menjadi beberapa fragmen besar yang disebut lempeng tektonik. Lempeng bergerak satu sama lain dan juga menembus ke arah konveksi mantel. Bagian alas litosfir melengser di atas zona lemah bagian atas mantel, yang disebut juga astenosfir. Bagian lemah astenosfir terjadi pada saat atau dekat suhu dimana mulai terjadi pelelehan, kosekuensinya beberapa bagian astenosfir melebur, walaupun sebagian besar masih padat. Kerak benua mempunyai tebal lk. 35 km, berdensiti rendah dan berumur 1 2 miliar tahun, sedangkan kerak samudera lebih tipis (lk. 7 km), lebih padat dan berumur tidak lebih dari 200 juta tahun. Kerak benua posisinya lebih di atas dari pada kerak samudera karena perbedaan berat jenis, dan keduanya mengapung di atas astenosfir.


Penampang bumi. Kerak yang menindih mantel hampir seluruhnya terdiri dari oksida yang tidak melebur. Proses vulkanik membawa fragmen batuan ke permukaan dari kedalaman lk. 200 km melalui mantel, hal tersebut ditunjukkan dengan adanya mineral-mineral olivine, piroksen dan garnet dalam peridotit pada bagian atas mantel

BAGAIMANA GUNUNGAPI TERBENTUK?
Pergerakan antar lempeng ini menimbulkan empat busur gunungapi berbeda:
  1. Pemekaran kerak benua, lempeng bergerak saling menjauh sehingga memberikan kesempatan magma bergerak ke permukaan, kemudian membentuk busur gunungapi tengah samudera.
  2. Tumbukan antar kerak, dimana kerak samudera menunjam di bawah kerak benua. Akibat gesekan antar kerak tersebut terjadi peleburan batuan dan lelehan batuan ini bergerak ke permukaan melalui rekahan kemudian membentuk busur gunungapi di tepi benua.
  3. Kerak benua menjauh satu sama lain secara horizontal, sehingga menimbulkan rekahan atau patahan. Patahan atau rekahan tersebut menjadi jalan ke permukaan lelehan batuan atau magma sehingga membentuk busur gunungapi tengah benua atau banjir lava sepanjang rekahan.
  4. Penipisan kerak samudera akibat pergerakan lempeng memberikan kesempatan bagi magma menerobos ke dasar samudera, terobosan magma ini merupakan banjir lava yang membentuk deretan gunungapi perisai.


Penampang diagram yang memper lihatkan bagaimana gunungapi ter bentuk di permukaan melalui kerak benua dan kerak samudera serta mekanisme peleburan batuan yang menghasilkan busur gunungapi, busur gunungapi tengah samudera, busur gunungapi tengah benua dan busur gunungapi dasar samudera


Di Indonesia (Jawa dan Sumatera) pembentukan gunungapi terjadi akibat tumbukan kerak Samudera Hindia dengan kerak Benua Asia. Di Sumatra penunjaman lebih kuat dan dalam sehingga bagian akresi muncul ke permukaan membentuk pulau-pulau, seperti Nias, Mentawai, dll

BAHAYA GUNUNGAPI
Bahaya letusan gunungapi dapat berpengaruh secara langsung (primer) dan tidak langsung (sekunder) yang menjadi bencana bagi kehidupan manusia. Bahaya yang langsung oleh letusan gunungapi adalah:
  1. Leleran lava
    Leleran lava merupakan cairan lava yang pekat dan panas dapat merusak segala infrastruktur yang dilaluinya. Kecepatan aliran lava tergantung dari kekentalan magmanya, makin rendah kekentalannya, maka makin jauh jangkauan alirannya. Suhu lava pada saat dierupsikan berkisar antara 800o 1200o C. Pada umumnya di Indonesia, leleran lava yang dierupsikan gunungapi, komposisi magmanya menengah sehingga pergerakannya cukup lamban sehingga manusia dapat menghindarkan diri dari terjangannya.
  2. Aliran piroklastik (awan panas)
    Aliran piroklastik dapat terjadi akibat runtuhan tiang asap erupsi plinian, letusan langsung ke satu arah, guguran kubah lava atau lidah lava dan aliran pada permukaan tanah (surge). Aliran piroklastik sangat dikontrol oleh gravitasi dan cenderung mengalir melalui daerah rendah atau lembah. Mobilitas tinggi aliran piroklastik dipengaruhi oleh pelepasan gas dari magma atau lava atau dari udara yang terpanaskan pada saat mengalir. Kecepatan aliran dapat mencapai 150 250 km/jam dan jangkauan aliran dapat mencapai puluhan kilometer walaupun bergerak di atas air/laut.
  3. Jatuhan piroklastik
    Jatuhan piroklastik terjadi dari letusan yang membentuk tiang asap cukup tinggi, pada saat energinya habis, abu akan menyebar sesuai arah angin kemudian jatuh lagi ke muka bumi. Hujan abu ini bukan merupakan bahaya langsung bagi manusia, tetapi endapan abunya akan merontokkan daun-daun dan pepohonan kecil sehingga merusak agro dan pada ketebalan tertentu dapat merobohkan atap rumah. Sebaran abu di udara dapat menggelapkan bumi beberapa saat serta mengancam bahaya bagi jalur penerbangan.
  4. Lahar letusan
    Lahar letusan terjadi pada gunungapi yang mempunyai danau kawah. Apabila volume air alam kawah cukup besar akan menjadi ancaman langsung saat terjadi letusan dengan menumpahkan lumpur panas.
  5. Gas vulkanik beracun
    Gas beracun umumnya muncul pada gunungapi aktif berupa CO, CO2, HCN, H2S, SO2 dll, pada konsentrasi di atas ambang batas dapat membunuh.

Bahaya sekunder, terjadi setelah atau saat gunungapi aktif:
  1. Lahar Hujan
    Lahar hujan terjadi apabila endapan material lepas hasil erupsi gunungapi yang diendapkan pada puncak dan lereng, terangkut oleh hujan atau air permukaan. Aliran lahar ini berupa aliran lumpur yang sangat pekat sehingga dapat mengangkut material berbagai ukuran. Bongkahan batu besar berdiameter lebih dari 5 m dapat mengapung pada aliran lumpur ini. Lahar juga dapat merubah topografi sungai yang dilaluinya dan merusak infrastruktur.
  2. Banjir bandang
    Banjir bandang terjadi akibat longsoran material vulkanik lama pada lereng gunungapi karena jenuh air atau curah hujan cukup tinggi. Aliran Lumpur disini tidak begitu pekat seperti lahar, tapi cukup membahayakan bagi penduduk yang bekerja di sungai dengan tiba-tiba terjadi aliran lumpur.
  3. Longsoran vulkanik
    Longsoran vulkanik dapat terjadi akibat letusan gunungapi, eksplosi uap air, alterasi batuan pada tubuh gunungapi sehingga menjadi rapuh, atau terkena gempabumi berintensitas kuat. Longsoran vulkanik ini jarang terjadi di gunungapi secara umum sehingga dalam peta kawasan rawan bencana tidak mencantumkan bahaya akibat Longsoran vulkanik.

PENANGGULANGAN BENCANA GUNUNGAPI
Dalam penanggulangan bencana letusan gunungapi dibagi menjadi tiga bagian, yaitu persiapan sebelum terjadi letusan, saat terjadi letusan dan sesudah terjadi letusan.
1. Sebelum terjadi letusan dilakukan :
  • Pemantaun dan pengamatan kegiatan pada semua gunungapi aktif,
  • Pembuatan dan penyediaan Peta Kawasan Rawan Bencana dan Peta Zona Resiko Bahaya Gunungapi yang didukung dengan dengan Peta Geologi Gunungapi,
  • Melaksanakan prosedur tetap penanggulangan bencana letusan gunungapi,
  • Melakukan pembimbingan dan pemeberian informasi gunungapi,
  • Melakukan penyelidikan dan penelitian geologi, geofisika dan geokimia di gunungapi,
  • Melakukan peningkatan sumberdaya manusia dan pendukungnya seperti peningkatan sarana dan prasarananya.

2. Setelah terjadi letusan :
  • Menginventarisir data, mencakup sebaran dan volume hasil letusan,
  • Mengidentifikasi daerah yang terancam bahaya,
  • Memberikan saran penanggulangan bahaya,
  • Memberikan penataan kawasan jangka pendek dan jangka panjang,
  • Memperbaiki fasilitas pemantauan yang rusak,
  • Menurunkan status kegiatan, bila keadaan sudah menurun,
  • Melanjutkan memantauan rutin.

JUMLAH SEBARAN GUNUNGAPI
Daerah
Tipe-ATipe-BTipe-CJumlah
Sumatera
13
12
6
21
Jawa
21
9
5
35
Bali
2
-
-
2
Lombok
1
-
-
1
Sumbawa
2
-
-
2
Flores
16
3
5
24
Laut Banda
8
1
-
9
Sulawesi
6
2
5
13
Kep.Sangihe
5
-
-
5
Halmahera
5
2
-
7

KLASIFIKASI GUNUNGAPI DI INDONESIA
  1. Tipe A
    Gunungapi yang pernah mengalami erupsi magmatik sekurang-kurangnya satu kali sesudah tahun 1600
  2. Tipe B
    Gunungapi yang sesudah tahun 1600 belum lagi mengadakan erupsi magmatik, namun masih memperlihatkan gejala kegiatan seperti kegiatan solfatara
  3. Tipe C
    Gunungapi yang erupsinya tidak diketahui dalam sejarah manusia, namun masih terdapat tanda-tanda kegiatan masa lampau berupa lapangan solfatara/fumarola pada tingkah lemah

PROSEDUR TETAP TINGKAT KEGIATAN GUNUNGAPI
  1. Aktif Normal (Level I)
    Kegiatan gunungapi berdasarkan pengamatan dari hasil visual, kegempaan dan gejala vulkanik lainnya tidak memperlihatkan adanya kelainan
  2. Waspada (Level II)
    Terjadi peningkatan kegiatan berupa kelainan yang tampak secara visual atau hasil pemeriksaan kawah, kegempaan dan gejala vulkanik lainnya
  3. Siaga (Level III)
    Peningkatan semakin nyata hasil pengamatan visual/pemeriksaan kawah, kegempaan dan metoda lain saling mendukung. Berdasarkan analisis, perubahan kegiatan cenderung diikuti letusan
  4. Awas (Level IV)
    Menjelang letusan utama, letusan awal mulai terjadi berupa abu/asap. Berdasarkan analisis data pengamatan, segera akan diikuti letusan utama


TAMBAHAN

  • MAGMA adalah suatu lelehan silikat bersuhu tinggi berada didalam Litosfir, yang terdiri dari ion-ion yang bergerak bebas, hablur yang mengapung didalamnya, serta mengandung sejumlah bahan berwujud gas. Lelehan tersebut diperkirakan terbentuk pada kedalaman berkisar sekitar 200 kilometer dibawah permukaan Bumi, terdiri terutama dari unsur-unsur yang kemudian membentuk mineral-mineral silikat.
  • LAVA adalah cairan magma pijar yang mengalir keluar dari dalam bumi melalui kawah gunung berapi atau melalui celah (patahan) yang kemudian membeku menjadi batuan yang bentuknya bermacam-macam.
  • LAHAR adalah aliran material vulkanik yang biasanya berupa campuran batu, pasir dan kerikil akibat adanya aliran air yang terjadi di lereng gunung (gunung berapi). Di Indonesia khususnya, aktivitas aliran lahar ini akan meningkat seiring dengan meningkatnya intensitas curah hujan.
  • ERUPSI adalah fenomena keluarnya magma dari dalam bumi. Erupsi dapat dibedakan menjadi erupsi letusan (explosive eruption) dan erupsi non-letusan (non-explosive eruption). Jenis erupsi yang terjadi ditentukan oleh banyak hal seperti kekentalan magma, kandungan gas di dalam magma, pengaruh air tanah, dan kedalaman dapur magma (magma chamber). Pada erupsi letusan, proses keluarnya magma disertai tekanan yang sangat kuat sehingga melontarkan material padat yang berasal dari magma maupun tubuh gunung api ke angkasa. Pada erupsi non-letusan, magma keluar dalam bentuk lelehan lava atau pancuran lava (lava fountain), gas atau uap air.


Model rumah yang disarankan untuk daerah sekitar gunungapi, agar terhindar dari beban endapan abu gunungapi.
  • Kemiringan atap 45 derajat atau lebih curam lagi
  • Tiang penopang atap lebih kerap dibantu dengan tiang diagonal
  • Dianjurkan atap terbuat dari seng agar tahan panas dari lontaran batu (pijar)

Senin, 23 Mei 2011

Pengenalan Tambang

PENGENALAN TAMBANG
1.1. ISTILAH TAMBANG, PENAMBANGAN DAN PERTAMBANGAN
Sebelum kita mulai dengan membahasa lebih jauh tentang tambang terbuka (tamka), ada baiknya kita terlebih dahulu mengetahui beberapa istilah tentang tambang, menambang, penambangan dan pertambangan (industri pertambangan).

Tambang adalah tempat yang digali orang untuk mengambil bahan galian (sumberdaya mineral) yang berharga. Kemudian menambang (to mine atau mine working) adalah kerja menggali bahan galian tersebut. Selanjutnya, jika fokusnya adalah proses menghasilkan bahan galian itu, maka istilah yang digunakan adalah penambangan (mining atau mining operation). Kegiatan penambangan ini biasanya meliputi ; pemeraian atau pembongkaran atau penggalian kemudian pemuatan dan selanjutnya dilakukan pengangkutan. Dan akhirnya ada sebuah kata lagi yang sekarang lazim digunakan, yaitu pertambangan (mines, mines departement atau mining industry). Pertambangan adalah pihak atau sistem yang menangani semua segi yang berhubungan dengan bahan galian, didalamnya tercakup tidak hanya tambang tempat orang mengambil bahan galian, tetapi juga pihak yang mengolah bahan mineral itu, bahkan kalau perlu sampai yang menjualnya.

1.2. USAHA PERTAMBANGAN (INDUSTRI PERTAMBANGAN)
Endapan bahan galian merupakan salah satu jenis sumber daya mineral. Endapan bahan galian umumnya tersebar secara tidak merata di dalam kulit bumi baik jenis, jumlah maupun kadarnya.

Sumber daya mineral (endapan bahan galian) memiliki sifat khusus dibandingkan dengan sumber daya yang lain, yaitu yang disebut dengan “wasting asset” atau “Unrenewable resources” yang artinya bila bahan galian tersebut ditambang di suatu tempat, maka bahan galian tersebut tidak dapat diperbaharui kembali. Atau dengan kata lain industri pertambangan merupakan industri dasar tanpa daur.

Maksud dan tujuan industri pertambangan adalah untuk memanfaatkan sumber daya mineral demi kesejahteraan ummat manusia. Indusri pertambangan di suatu daerah akan memberikan dampak positif dan negatif. Dampak positif industri pertambangan adalah :
1.      Menambah pendapatan Negara.
2.      Ikut meningkatkan perkembangan sosial, ekonomi dan budaya daerah setempat.
3.      Memberikan kesempatan kerja (lapangan pekerjaan baru).
4.      Memberikan kesempatan alih teknologi dan informasi.
5.      Memantapkan keamanan lingkungan.

Sedangkan dampak negatif industri pertambangan adalah :
1.      Merubah morfologi dan fisiologi tanah (tata guna tanah).
2.      Merusak lingkungan, karena tanah yang subur hilang, vegetasi dibabat sehingga daerah menjadi gundul dan mudah tererosi serta longsor, flora dan fauna rusak sehingga ekologi rusak, plousi sungai, udara dan suara.
3.      Menimbulkan kesenjangan sosial, ekonomi dan budaya. Dalam mengusahakan industri pertambangan selalu berhadapan dengan dengan sesuatu yang serba terbatas baik lokasi, jenis, jumlah maupun mutu materialnya. Keterbatasan ini ditambah lagi dengan usaha meningkatkan keselamatan kerja serta menjaga kelestarian lingkungan hidup. Jadi didalam mengelola sumber daya mineral diperlukan tahapan usaha pertambangan dan penerapan metoda penambangan yang sesuai dan tepat, baik ditinjau dari segi ekonomis maupun teknis, agar perolehannya dapat optimal.

1.3. TAHAPAN KEGIATAN USAHA PERTAMBANGAN
Kegiatan usaha pertambangan meliputi tugas-tugas yang dilakukan untuk mencari, mengambil bahan galian dari dalam kulit bumi, kemudian mengolah sampai bisa bermanfaat bagi manusia. Secara garis besar tahapan kegiatan usaha pertambangan adalah :
1.      Prospeksi (Penyelidikan Umum)
2.      Eksplorasi
3.      Studi Kelayakan.
4.      Persiapan Penambangan.
5.      Penambangan.
6.      Pengolahan/Pemurnian.
7.      Pengangkutan.
8.      Pemasaran.
Setiap melakukan tahapan kegiatan usaha pertambangan, pengusaha harus memiliki Surat Keputusan pemberian Kuasa Pertambangan (KP) dari Menteri Energi dan Sumber Daya Mineral malalui Bupati/Walikota atau Gubenur, Direktorat Jenderal Pertambangan Umum (sesuai prosedur permohonan KP Kep.Men No.1453.K/29/MEM/2000).

Prospeksi (Penyelidikan Umum)merupakan langkah pertama dalam kegiatan usaha pertambangan. Pada tahap ini kegiatan ditujukan untuk mencari dan menemukan endapan bahan galian dan mempelajari keadaan geologi secara umum untuk daerah yang bersangkutan berdasarkan data permukaan. Cara yang digunakan dalam penyelidikan umum adalah mengikuti data petunjuk tentang adanya suatu endapan bahan galian di suatu daerah, antara lain dengan cara “tracing float”, geofisika, geokimia, bor tangan dan lain-lain.

Eksplorasi Penyelidikan eksplorasi merupakan kegiatan lanjutan dari penyelidikan umum yang bertujuan untuk mendapatkan kepastian tentang endapan bahan galian tersebut, yaitu mengenai : – bentuk, ukuran serta letak atau kedudukan endapan bahan galian – menentukan besar dan mutu cadangan – sifat fisik, mekanik dan kimia bahan galian – sifat fisik, mekanik dan kimia batuan sekelilingnya, dan lain-lain.

Kegiatan-kegiatan yang dilakukan dalam penyelidikan ini meliputi :
-         Penyelidikan geologi secara lebih teliti baik ke arah horizontal maupun vertical.
-         Melakukan pengambilan percontoh secara sistematis dan lebih detail, seperti dilakukan dengan cara pemboran inti (core drilling) dan sumur uji.
-         Studi Kelayakan Tahapan ini merupakan puncak dari serangkaian penyelidikan sebelum usaha penambangan dimulai.

Studi kelayakan merupakan evaluasi dan perhitungan-perhitungan untuk menentukan dapat atau tidaknya suatu endapan bahan galian ditambang dengan menguntungkan berdasarkan pertimbangan-pertimbangan ekonomis dan teknis dengan mengingat keselamatan kerja serta kelestarian lingkungan hidup. Dalam tahapan ini perlu dilakukan penyelidikan serta proyeksi-proyeksi harga dan pemasaran untuk dapat memperkirakan harga pokok dan hasil penjualan.
Laporan yang dihasilkan harus dapat memberikan gambaran yang jelas tentang prospek endapan bahan galian, sehingga dapat diambil keputusan dan langkah-langkah selanjutnya. Persiapan Penambangan Sebelum penambangan dimulai harus dilakukan persiapan-persiapan seperti membuat jalan, membangun kantor, gudang, bengkel, menyiapkan peralatan penambangan, membabat semak belukar (clearing) dan kadang-kadang sampai pengupasan tanah penutup. Penambangan Penambangan adalah kegiatan yang ditujukan untuk membebaskan dan mengambil bahan galian dari dalam bumi kemudian membawanya ke permukaan bumi untuk dapat dimanfaatkan bagi manusia dan makhluk lain.

Penambangan dilakukan dengan beberapa cara atau metoda (tambang terbuka dan tambang bawah tanah). Hal ini sangat tergantung pada banyak faktor dan pertimbangan. Beberapa pertimbangan utama yang harus diperhatikan adalah :
ü      Keadaan endapan bahan galian (ukuran, bentuk, letak, kedalaman, penyebaran kadar endapan dan lain-lain). – Sifat fisik, mekanik dan kimia endapan bahan galian dan batuan disekelilingnya (country rock).
ü      Keadaan topografi dan morfologi.
ü      Geologi dan struktur.
ü      Kemungkinan proses pengolahannya.
ü      Kemungkinan perluasaan atau pengembangan (development) dan mekanisasi.
ü      Reklamasi daerah bekas penambangan.

Dalam praktek dan pelaksanaannya metoda penambangan dibatasi oleh beberapa faktor, yaitu :
v     Ekonomis-teknis, diwujudkan dalam usaha mendapatkan recovery tambang semaksimal mungkin dengan biaya sekecil mungkin.
v     Keamanan dan keselamatan kerja, diwujudkan dalam usaha memperkecil kemungkinan terjadinya kecelakaan.
v     Kelestarian lingkungan hidup yang diwujudkan dalam usaha mencegah terjadinya pengerusakan tanah dan pencemaran lingkungan yang diakibatkan kegiatan penambangan. Pengolahan Bahan Galian

Pengolahan bahan galian bertujuan untuk menaikkan kadar atau mempertinggi mutu bahan galian yang dihasilkan dari tambang sampai memenuhi persyaratan untuk diperdagangkan atau dipakai sebagai bahan baku untuk industri lain. Juga untuk mengurangi jumlah dan beratnya sehingga dapat mengurangi ongkos pengangkutan. Bahan galian yang dihasilkan dari tambang biasanya selain mengandung mineral berharga yang diinginkan juga mengandung mineral pengotor (gaunge minerals), sehingga hasil tambang tidak bisa langsung dimanfaatkan atau diperdagangkan. Untuk menghilangkan mineral pengotor tersebut maka dilakukan pengolahan bahan galian

berdasarkan pada perbedaan sifat fisik dan kimia antara mineral berharga dengan mineral pengotor. Pengangkutan Pengangkutan adalah segala usaha untuk memindahkan bahan galian hasil tambang atau pengolahan dan pemurnian dari daerah penambangan atau tempat pengolahan dan pemurnian ke tempat pemasaran atau pemanfaatan selanjutnya.

1.4. METODE PENAMBANGAN
Secara garis besar metoda penambangan dapat digolongkan menjadi 3 yaitu :
1.      Tambang Terbuka (Surface Mining).
2.      Tambang Bawah Tanah (Underground Mining).
3.      Tambang Bawah Air (Underwater Mining).




Tambang Terbuka Tambang terbuka adalah metoda penambangan yang segala kegiatan dan aktivitas penambangannya dilakukan di atas atau relatif dekat dengan permukaan bumi, dan tempat kerjanya berhubungan langsung dengan udara. Tambang terbuka dibagi atas :
1.      Open pit / Open cut / Open cast / Open mine.
2.      Quarry.
3.      Strip mine.
4.      Alluvial mine.

Tambang BawahTanah Tambang bawah tanah adalah metoda penambangan yang segala kegiatan atau aktivitas penambangannya dilakukan di bawah permukaan bumi, dan tempatnya kerjanya tidak berhubungan langsung dengan udara luar. Klasifikasi metoda tambang bawah tanah yang dikenal saat ini sangat banyak, walaupun demikian pada dasarnya metoda tambang bawah tanah dapat dikelompokkan menjadi tiga bagian, yaitu :
1.      Stope dengan penyangga alamiah – Open stope dengan underhand stoping – Open stope dengan overhand stoping – Open stope dengan breast stoping (room and pillar) – Sublevel stoping.
2.      Stope dengan penyangga buatan – Cut and fill stoping – Shringkage stoping – Square-set stoping – Stull stoping – Longwall mining – Undercut and fill – Top slicing.
3.      Metode Caving – Sublevel caving – Block caving.

Tambang Bawah Air Tambang bawah air adalah metoda penambangan yang kegiatan penggaliannya dilakukan di bawah permukaan air. Metoda penambangan dipilih berdasarkan pada metoda yang dapat memberikan keuntungan yang terbesar dan bukan kedalaman letak bahan galian, serta mempunyai perolehan tambang (mining recovery) yang terbaik. Hal ini dilakukan karena usaha pertambangan dikenal sebagai wasting assets dengan resiko tinggi, sedangkan bahan galian tersebut tidak dapat diperbaharui. Dalam memilih metoda penambangan juga mempunyai aspek keuntungan dan kerugian dari masing-masing metoda tersebut. Keuntungan dan kerugian tambang terbuka dibandingkan dengan tambang bawah tanah adalah sebagai berikut.
Keuntungan ;
1.      Ongkos penambangan per ton atau per BCM bijih lebih murah, karena tidak memerlukan penyanggaan, ventilasi dan penerangan.
2.      Kondisi kerja lebih baik, karena berhubungan langsung dengan udara luar dan sinar matahari.
3.      Penggunaan alat-alat mekanis dengan ukuran besar dapat lebih leluasa, sehingga produksi lebih besar.
4.      Pemakaian bahan peledak bisa lebih effisien dan leluasa, karena adanya bidang bebas (free face) yang lebih banyak dan gas-gas beracun yang ditimbulkan oleh peledakan cepat dihembus angin.
5.      Mining recovery lebih besar, karena batas endapan dapat dilihat dengan jelas.
6.      Relatif lebih aman, karena bahaya yang mungkin timbul terutama akibat longsoran, sedangkan pada tambag bawah tanah selain kelonsoran juga disebabkan gas-gas beracun, kebaran dan lain-lain.
7.      Pengawasan dan pengamatan mutu bijih lebih mudah.

Kerugian :
1.      Para pekerja langsung dipengaruhi oleh keadaan cuaca, dimana hujan yang lebat atau suhu yang tinggi mengakibatkan kinerja menurun, sehingga produksi menurun.
2.      Kedalaman penggalian terbatas, karena semakin dalam penggalian akan semakin banyak menggali tanah penutup.
3.      Timbul masalah tempat pembuangan tanah penutup yang jumlahnya cukup banyak.
4.      Alat-alat mekanis tersebar letaknya.
5.      Pencemaran lingkungan hidup relatif lebih besar.

Minggu, 22 Mei 2011

dari eman buat ibu

mesa_lord@yahoo.co.id

lanjut

4.4 STRUKTUR BIDANG PERLAPISAN

Banyak struktur terbentuk pada bidang akumulasi sedimen. Walau demikian, banyak (kalau bukan sebagian besar) struktur itu tidak terawetkan sebagai struktur pada bidang perlapisan atas, melainkan sebagai cast pada bidang perlapisan bawah dari batuan yang terletak diatasnya. Hal itu terutama terjadi apabila material yang mengandung struktur itu berupa lumpur, sedangkan batuan yang terletak diatasnya berupa pasir. Jejak hujan (rain print), lekang kerut (mud crack), flute, dan groove terawetkan sebagai “cast” pada bidang perlapisan bawah batupasir. Di lain pihak, sebagian struktur dapat ditemukan baik pada bidang perlapisan bawah maupun bidang perlapisan atas. Gelembur, misalnya saja, dapat muncul sebagai struktur asli maupun sebagai cast pada bidang perlapisan bawah batupasir. Demikian pula dengan parting lineation. Struktur yang biasanya terbentuk pada bidang perlapisan atas lumpur umumnya hanya muncul sebagai struktur bidang perlapisan bawah (sole marks).

4.4.1 Struktur Bidang Perlapisan Bawah

Struktur bidang perlapisan bawah merupakan gejala yang menandai bidang perlapisan bawah pada beberapa lapisan batupasir dan, kadang-kadang, beberapa batugamping yang terletak di atas serpih. Struktur itu merupakan tonjolan-tonjolan yang terbentuk akibat terisinya lekukan-lekukan pada permukaan lumpur di atas mana lapisan batupasir itu diendapkan. Meskipun telah diketahui keberadaannya sejak lama (lihat Hall, 1843), namun asal-usulnya tidak banyak dipahami. Struktur itu benar-benar merupakan hieroglif dan baru-baru ini saja dipahami (Vassaevich, 1953; Kuenen, 1957; Dzulynski, 1963; Dzulynski & Sanders, 1962; Dzulynski & Walton, 1965). Penelitian-penelitian pertama terhadap struktur bidang perlapisan bawah diarah-kan pada pemerian, penggolongan, dan manfaatnya sebagai indikator arus purba. Usaha-usaha untuk memahami asal-usulnya membawa para ahli untuk sampai pada penelitian eksperimental (Dzulynski, 1966; Dzulynski & Walton, 1963; Allen, 1971).

Struktur bidang perlapisan bawah terbentuk akibat aksi arus, akibat deformasi yang dipicu oleh pembebanan, dan oleh organisme (tabel 4-1). Disini kita akan menujukan perhatian pada struktur yang terbentuk oleh arus. Struktur itu bisa dikelompok-kan ke dalam dua kategori: (1) struktur yang terbentuk akibat kerukan oleh arus; (2) struktur yang terbentuk akibat aksi material rombakan yang diangkut oleh arus. Kategori kedua ini biasa disebut sebagai tool marks.

4.4.1.1 Struktur Kerukan dan Tool marks

Kekukan arus menghasilkan flute yang, ketika terisi oleh pasir dan ketika material isian itu bergabung dengan lapisan pasir yang terletak diatasnya, disebut flute cast. Dengan demikian, flute cast akan muncul sebagai tonjolan pada bidang perlapisan bawah batupasir yang terletak di atas lapisan serpih. Tonjolan itu memiliki bentuk, ukuran, dan susunan yang beragam. Tonjolan itu memanjang, dimana salah satu ujungnya membonggol dan mengarah ke hulu, sedangkan ujung yang lain meruncing dan mengarah ke hilir. Tonjolan hilir makin lama makin landai dan akhirnya menghilang bersatu dengan bidang perlapisan. Flute cast memiliki panjang mulai dari sekitar 1 cm hingga sekitar 1 meter, dengan ketinggian mulai dari beberapa milimeter hingga beberapa centimeter. Sebagian flute cast demikian panjang; sebagian lain bentuknya cenderung segitiga. Ujung yang mem-bonggol kadang-kadang berbentuk seperti ujung hidung. Flute cast biasanya berkelompok; jarang ditemukan flute cast soliter. Setiap flute cast dalam kelompok itu dapat dipisahkan oleh jarak yang relatif lebar, namun dapat pula demikian rapat, bahkan dapat saling berpotongan (Kuenen, 1957).

Material pengisi flute adalah pasir. Dalam banyak kasus, material pengisi flute lebih kasar dibanding material lain yang penyusun lapisan dimana flute cast berada. Flute cast yang bentuknya kurang beraturan dapat mirip dengan struktur beban (load cast). Walau demikian, flute cast akan tampak memotong laminasi-laminasi pada lapisan yang terletak dibawahnya. Laminasi di sekeliling struktur beban, di lain pihak, terdeformasi dan tidak akan berakhir secara tajam pada sisi-sisi struktur beban. Sebagian flute cast memperlihatkan adanya bentuk-bentuk seperti teras. Hal itu mengindikasikan bahwa flute tersebut terbentuk oleh beberapa fasa erosi.

Flute agaknya terbentuk oleh eddy scour. Ketika kondisi aliran memungkinkan, terbentuk sejumlah eddy dan arus itu kemudian mengeruk permukaan lapisan lumpur yang terletak dibawahnya. Ukuran flute agaknya tergantung pada kondisi aliran. Ukuran flute juga agaknya berkaitan dengan kekasaran material itu dan, oleh karena itu, berkaitan dengan kekuatan arus. Flute cast sangat bermanfaat dalam penelitian arus purba. Meskipun flute dapat terbentuk pada lingkungan yang beragam, namun flute cast paling sering ditemukan di bagian bawah batupasir (dan batugamping) turbidit. Karena itu, flute seringkali menjadi salah satu penciri fasies flysch.

Struktur lain yang dihasilkan oleh kerukan arus (dan, oleh karena itu, berasosiasi dengan flute) adalah current crescent (Bahasa Jerman: Hufeisenwülste), yakni suatu lekukan berbentuk tapal kuda. Kerukan itu terbentuk akibat pengerukan di seputar partikel stasioner berukuran relatif besar (suatu “obstacle”), misalnya sebuah kerikil, yang terletak di permukaan pasir. Kerukan itu cembung ke hulu dengan kedalaman maksimum di sisi hulu partikel penghalang, kemudian kedalamannya makin berkurang ke hilir. Pada banyak kasus, partikel penghalang itu berupa gumpalan serpih yang kemudian tersapu sehingga tidak terawetkan.

Arus juga menggerakkan berbagai benda—butiran pasir, rangka binatang, gumpalan lumpur, dsb. Jika benda-benda itu terangkut di atas dasar lumpur, menggelundung, atau kadang-kadang terangkat dari permukaan, maka akan terbentuk jejak pergerakan yang kemudian terawetkan sebagai struktur positif lemah pada dasar batupasir yang menindih lumpur. Struktur seperti itu secara umum dinamakan tool marks.

Salah satu tipe tool mark adalah groove cast yang tampak sebagai tonjolan rektilinier, membundar hingga berpuncak tajam, serta terletak pada bidang perlapisan bawah batupasir. Sebagian groove cast berkelompok dan memperlihatkan adanya himpunan tonjolan dan lekukan yang dapat dipandang sebagai groove cast orde-2. Sebagian himpunan groove cast orde-2 itu memperlihatkan pola divergen dan tersebar secara simetris di kedua sisi groove cast utama. Struktur itu diperkirakan terbentuk akibat terjadinya pengisian lekukan-lekukan yang terbentuk pada lumpur keras oleh berbagai benda yang bergerak. Struktur seperti itu disebut juga struktur seretan (“drag mark”; “drag cast”) (Kuenen, 1957).

Groove cast umumnya muncul berkelompok. Lebih dari satu himpunan groove cast biasanya terlihat pada bidang yang sama, dimana himpunan kedua memotong himpunan pertama dengan sudut pemotongan yang lancip. Sebagian himpunan groove cast biasanya terhapuskan oleh himpunan groove cast kedua. Dalam satu himpunan groove cast, hanya akan ada sedikit bahkan mungkin tidak ada deviasi azimuth. Groove cast jarang muncul secara bersama-sama dengan flute cast; kedua struktur itu agaknya bersifat ekslusif satu terhadap yang lain. Individu-individu groove cast memperlihatkan relief hanya sekitar 1 atau 2 mm, sangat lurus, dan dalam kebanyakan singkapan tidak memperlihatkan titik awal maupun titik akhir. Karena itu, kita jarang menemukan “alat” yang bertanggungjawab terhadap pembentukan suatu groove cast.

Groove cast hendaknya dibedakan dari struktur geseran (slide mark; slide cast) yang terbentuk akibat bergeraknya suatu benda berukuran besar atau suatu massa benda berukuran relatif besar, misalnya rakit serpih (shale raft). Massa yang bergeser itu cenderung berputar baik pada arah vertikal maupun lateral sehingga jejak yang dihasilkannya melengkung dan mencermin-kan putaran itu. Groove cast tidak memperlihatkan sifat seperti itu; groove berasosiasi dengan tool mark lain seperti prod cast dan skip cast. Sebagaimana flute cast, groove cast paling sering ditemukan dalam bidang perlapisan bawah turbidit. Groove cast mungkin merupakan tipe struktur bidang perlapisan bawah yang paling sering ditemukan dalam fasies flysch.

Asal-usul groove cast telah menjadi teka-teki selama beberapa lama. Groove cast merupakan struktur yang dihasilkan oleh arus. Orientasi groove cast berkorelasi sangat baik dengan arah arus sebagaimana yang diindikasikan oleh struktur lain. Selain itu, bukti bahwa groove cast merupakan suatu tool mark terbukti dari fakta yang sangat jarang ditemukan, yaitu adanya partikel pasir atau fragmen rangka binatang pada ujung hilir dari groove cast. Walau demikian, detil-detil dinamika pembentukan groove cast masih belum jelas. Sebagian besar benda yang diangkut oleh arus bergerak dengan cara menggelundung atau melonjak-lonjak, sebagaimana yang diindikasikan oleh berbagai tipe jejak tumbukan. Pembentukan groove cast, di lain pihak, memerlukan adanya kontak menerus antara “alat” dengan dasar, bahkan memerlukan adanya tekanan. Selain itu, sebagaimana diindikasikan oleh groove berornamen, “alat” itu tidak melakukan pergerakan rotasional. Eddy menghasilkan flute, bukan groove. Dengan demikian, mekanisme pembentukan groove belum dipahami sepenuhnya.

Adanya himpunan-himpunan groove cast yang saling memotong juga merupakan sebuah masalah tersendiri. Groove diasumsikan terbentuk oleh arus turbid yang bergerak sebagai aliran pekat menuju bagian bawah lereng. Namun, jika suatu himpunan groove merekam pergerakan ke bagian bawah lereng, maka himpunan yang lain tidak akan merekam pergerakan ke arah bagian bawah lereng [karena arah kemiringan hanya satu; tidak mungkin bermacam-macam—pent.] Apakah himpunan-himpunan itu terbentuk oleh arus yang sama atau oleh arus yang berbeda-beda?

Karena sering ditemukan, groove merupakan salah satu indikator arus purba yang sangat bermanfaat. Walau demikian, groove hendaknya digunakan bersama-sama dengan struktur lain; groove hanya memberikan informasi mengenai azimuth, namun tidak memberikan informasi mengenai arah aliran.

Selain groove, ada pula kategori tool mark yang lain. Sebagian tool mark itu terbentuk oleh benda yang menumbuk dasar secara tidak menerus; tool mark lain menggelundung di dasar dan meninggalkan jejak yang khas. Tool mark yang terbentuk oleh tumbukan benda secara tidak menerus mencakup bounce cast, brush cast, dan prod cast. Bounce cast—yang disebut juga skip cast—merekam pergerakan saltasi suatu benda. Struktur itu tampak sebagai tonjolan-tonjolan kecil yang masing-masing dipisahkan oleh suatu jarak yang relatif teratur. Brush mark atau brush cast adalah istilah yang digunakan untuk menamakan struktur yang mirip dengan bounce cast, namun jarak antar tonjolannya tidak beraturan. Brush cast juga dicirikan oleh sedikit tonjolan material yang terangkat pada sisi hilir. Prod cast dicirikan oleh penetrasi dasar lumpur oleh suatu benda. Setelah menumbuk, benda itu berputar ke hilir. Karena itu, prod cast akan tampak sebagai suatu groove cast yang sangat pendek dengan ujung hilir yang lebih jelas dan berakhir secara tiba-tiba.

Roll mark merekam benda yang menggelundung. Roll mark yang sering ditemukan pada paket flysch adalah roll mark yang dihasilkan oleh rangka berulir planar yang agaknya berputar seperti roda dan, sebagaimana kembang pada ban mobil, menghasilkan jejak yang sangat khas (Seilacher, 1963).

4.4.1.2 Cast dari Lekang Kerut

Tipe struktur bidang perlapisan bawah lain, yang tidak berkaitan dengan aksi arus, adalah cast lekang kerut (mud crack cast). Lekang kerut berkembang dalam material kohesif, misalnya lumpur, akibat pengeringan dan pengerutan. Proses itu meng-hasilkan sistem retakan poligonal; retakan paling lebar terletak di permukaan dan ukuran retakan itu makin berkurang ke arah dalam sehingga apabila dilihat pada penampang melintang, retakan itu tampak membaji. Jika permukaan lumpur yang telah terlekang-kerutkan kemudian tertutup secara tiba-tiba dan terkubur di bawah pasir, maka pasir itu akan mengisi retakan-retakan yang ada dan akhirnya akan bersatu dengan lapisan pasir yang terletak di atas lumpur itu selama berlangsungnya litifikasi. Ketika paket serpih-batupasir itu kemudian terlapukkan, maka serpih yang ada di bawah lapisan batupasir itu akan tererosi dan jejak yang ditinggalkannya adalah suatu sistem tonjolan berbentuk poligonal pada bidang perlapisan bawah batupasir. Tonjolan-tonjolan itu memiliki puncak yang tajam. Sistem tonjolan itulah yang disebut cast lekang kerut.

4.4.1.3 Struktur Beban

Deformasi sedimen lunak (soft-sediment deformation) menghasilkan struktur yang beragam dan sebagian diantaranya berukuran relatif besar. Sebagian diantara struktur itu merupakan struktur bidang perlapisan bawah yang terbentuk akibat pembebanan tidak merata atau akibat stratifikasi densitas yang tidak stabil. Struktur yang dinamakan struktur beban (load cast atau, lebih tepat lagi, load pocket) itu akan dibahas pada bagian ini karena berasosiasi erat dengan strutkur bidang perlapisan bawah lain. Sebagian besar perlapisan deformasi, serta struktur yang dihasilkannya, akan dibahas pada sub bab 4.3.

Struktur beban adalah tonjolan yang bentuknya agak tidak beraturan dan ditemukan pada bidang perlapisan bawah batu-pasir yang terletak di atas lapisan serpih. Dilihat dari ukuran dan reliefnya, struktur beban mirip dengan flute cast. Walau demikian, struktur beban lebih tidak beraturan, tidak memperlihatkan kesetangkupan, dan tidak memperllihatkan orientasi sebagaimana flute cast. Struktur beban bukan merupakan “cast” karena tonjolan pasir ke bawah itu bukan merupakan produk pengisian suatu kerukan, melainkan akibat deformasi laminasi-laminasi pada tubuh lumpur yang terletak dibawahnya. Agaknya struktur ini merupakan produk pembebanan yang tidak merata terhadap lumpur hidroplastis yang terletak di bawah lapisan pasir, dimana struktur itu sendiri merupakan perwujudan vertical readjustment, dimana pasir melesak ke dalam sebagai tanggapan pergerakan lumpur ke atas. Pada kasus ekstrim, struktur ini mirip dengan karung yang digantung, dimana massa pasir yang melesak dihubungkan dengan lapisan pasir oleh suatu “tali gantungan” yang berupa kolom pasir berukuran kecil. Bahkan, pada kasus lain, kantung-kantung pasir menjadi terlepas dari lapisan induknya dan kemudian tenggelam ke dalam massa lumpur yang ada dibawahnya. Massa pasir seperti itu disebut load pouche dan, jika lepas, disebut load ball.

Proses pembentukan struktur beban kadang-kadang diawali oleh pembebanan tidak merata yang tidak berkaitan dengan proses sedimentasi. Jika sifat-sifat lumpur yang terletak dibawahnya sesuai, flute dan groove yang terbentuk di permukaan lumpur itu dapat tenggelam dan menghasilkan jejak-jejak yang dapat dianggap sebagai struktur beban. Bahkan, gelembur terisolasi (“starved” ripple; isolated ripple) dapat berperan sebagai beban yang tidak merata dan, di bawah kondisi yang sesuai, akan melesak ke dalam lapisan lumpur yang terletak dibawahnya (Dzulynski, 1962). Pada kasus yang disebut terakhir ini, ada pola yang teratur dan kita masih akan dapat melihat struktur internal yang semula merupakan bagian dari gelembur itu.

Struktur beban dapat terbentuk dalam setiap lingkungan dimana pasir diendapkan di atas lumpur hidroplastis yang dijenuhi air. Struktur beban sering ditemukan dalam paket turbidit. Meskipun demikian, dalam paket turbidit sekalipun, hanya sebagian saja yang memperlihatkan struktur beban. Ketika suatu massa turbid mengalir tidak lama setelah arus turbid sebelumnya berhenti, maka lumpur yang terletak dibawahnya tidak memiliki waktu yang cukup untuk mengeluarkan semua air yang ada didalamnya. Karena itu, efek-efek pembebanan akan terlihat jelas. Jika rentang waktu yang memisahkan beberapa aliran relatif panjang, maka kompaksi alami akan memperkecil kemungkinan terbentuknya struktur beban.

4.4.2 Struktur Bidang Perlapisan Atas

Struktur bidang pelapisan atas (surface marks) mencakup berbagai tipe rill mark, struktur arus (current mark), dan struktur lain. Sebagian besar struktur itu terbentuk pada bidang perlapisan atas dari pasir. Struktur itu sendiri dapat muncul sebagai struktur normal yang terletak pada bidang perlapisan atas suatu batuan, atau sebagai struktur “negatif” atau sebagai “cast” yang terletak pada bidang perlapisan bawah endapan lain yang terletak di atas pasir. Gelembur, yang merupakan salah satu tipe struktur bidang perlapisan atas yang paling sering ditemukan, telah dibahas di atas. Struktur biogenik yang terletak pada bidang perlapisan atas akan dibahas pada sub bab 4.6. Lekang kerut juga akan dibahas pada bagian ini, meskipun cara pembahasan seperti itu mungkin agak kurang logis.

4.4.2.1 Parting lineation

Suatu jenis struktur yang sering ditemukan, namun kurang dikenal, adalah suatu struktur yang halus namun jelas terlihat pada bidang perlapisan beberapa batupasir yang berlapis tipis. Struktur itu terutama sangat jelas terlihat pada batupasir yang menjadi sumber flagstone. Struktur itu dinamakan primary current lineation oleh Stokes (1947). Cloos (1938) menyatakan bahwa struktur itu sejajar dengan arah arus pengendap. Karena paling jelas terlihat pada bidang-bidang yang menyuban, maka struktur itu kemudian dinamakan parting lineation oleh Crowell (1955).

Struktur itu terlihat sebagai sederetan lekukan dan tonjolan halus dengan relief yang sangat rendah serta terletak pada bidang perlapisan-penyubanan. Pada kasus lain, parting lineation kurang sempurna dan agak tidak beraturan, dimana sisa-sisa laminasi yang seperti plaster menempel pada bidang penyubanan. Istilah parting-step lineation digunakan oleh McBride & Yeakel (1963) untuk menamakan struktur pada kasus seperti itu untuk membedakannya dengan parting-plane lineation yang terlihat pada bidang yang lebih mulus. Kedua ahli itu menunjukkan bahwa arah rata-rata yang diperlihatkan oleh sumbu panjang partikel sejajar dengan arah lineasi. Stokes (1953) mengasumsikan bahwa struktur itu mengindikasikan “pembentukan dalam lingkungan sungai atau paling tidak pada aliran dangkal.” Sebenarnya, parting lineation juga dapat ditemukan dalam batupasir turbidit yang diendapkan di wilayah perairan-dalam.

4.4.2.2 Rill mark, Swash Mark, dan Struktur Lain yang Berasosiasi Dengannya

Permukaan pasir dapat memperlihatkan berbagai macam jejak kerja arus, namun banyak diantara jejak itu jarang terawetkan. Rill mark adalah lekukan-lekukan kecil yang bercabang-cabang ke arah hulu dengan pola dendritik. Struktur itu umumnya ditemukan dalam swash zone pada gisik, meskipun dapat ditemukan pula pada gosong pasir dan sandflat. Struktur itu agaknya terbentuk oleh aliran air yang relatif tipis. Swash mark adalah garis-garis tipis, bergelombang, serta terbentuk pada gisik di dekat limit atas dari swash gelombang (Shrock, 1948). “Gelembur” rhomboid (rhomboid “ripple” mark) adalah relief rendah dengan pola seperti jaring (Hoyt & Henry, 1963; Otvos, 1965) dan agaknya merupakan produk backwash pada gisik. Secara umum, rill mark, swash mark, dan “gelembur” rhomboid sangat jarang terawetkan dalam sedimen purba.

4.4.2.3 Rail Pit, Hail Pit, dan Spray Pit

Jejak hujan (rain impression; rain print), jejak tetesan air (drip impression), dan jejak percikan air (spray impression) adalah lekukan kecil berbentuk lingkaran atau elips yang terbentuk dalam lumpur basah oleh hujan, tetesan air, dan percikan air. Jejak hujan pernah ditemukan dalam endapan purba, umumnya sebagai cast pada bidang perlapisan bawah batupasir dan batulanau. Sebagaimana lekang kerut, jejak hujan, jejak tetesan air, dan jejak percikan air mengindikasikan penyingkapan di permukaan dan kemudian besar akan terawetkan dalam endapan terestrial. Jejak gelembung gas (bubble impression) mirip, dan oleh karena itu, dapat tertukar dengan jejak hujan.

4.4.2.4 Lekang Kerut

Sebagian bidang perlapisan ditandai oleh retakan-retakan poligonal yang kemudian terisi oleh pasir atau lanau. Batuan yang menjadi tempat pembentukan retakan itu semula berupa lumpur dan sistem retakan itu sendiri berkembang akibat pengerutan. Pengerutan lumpur itu sendiri pada umumnya terjadi akibat lepasnya air yang semula ada dalam lumpur akibat pengeringan. Dengan demikian, pembentukan lekang kerut mengimplikasikan penyingkapan di permukaan. Karena itu, retakan-retakan tersebut dinamakan retakan pengeringan (desiccation crack) atau sun crack. Tidak semua sedimen yang mengalami pengerutan merupakan sedimen argilit. Lekang kerut juga dapat ditemukan dalam batugamping mikrit (micritic limestone) dan mungkin dapat terisi oleh lanau gamping, bahkan oleh lanau dan pasir dolomit. Lekang kerut yang terbentuk pada lumpur argilit kemungkinan besar akan terlihat sebagai cast pada bidang perlapisan bawah batupasir yang menindihnya; lekang kerut dalam lumpur gamping kemungkinan besar akan terawetkan sebagai struktur bidang perlapisan atas.

Ukuran poligon, lebar retakan, dan kedalaman retakan sangat bervariasi. Poligon retakan itu dapat memiliki lebar mulai dari beberapa milimeter hingga lebih dari 30 cm, sedangkan lebar retakan berkisar mulai dari 1 mm hingga sekitar 5 cm. Kedalaman retakan itu sendiri dapat berkisar mulai dari sekitar 1 cm hingga beberapa puluh centimeter. Pola jaringan retakan (apakah membentuk pola yang “kasar” atau “halus”) mungkin berkaitan dengan ketebalan lapisan yang mengalami pengeringan.

Retakan itu biasanya membaji ke bawah dan umumnya diisi oleh pasir atau material lain yang relatif kasar. Jika lapisan yang mengalami pengeringan relatif tipis (beberapa milimeter), retakan itu mungkin dapat menembus lapisan lain yang terletak di bawah lapisan itu. Dengan demikian, pada kasus itu, poligon-poligon lekang kerut dapat terlepas, sedikit terpindahkan, terotasi, bahkan terbalik dan kemudian terangkat oleh aliran yang mengendapkan pasir yang terletak di atas lapisan lumpur itu untuk akhirnya diendapkan bersama-sama dengan lapisan pasir tersebut. Hal itulah yang kemudian menyebabkan terbentuknya shale-pebble conglomerate dengan matriks berupa pasir.

Pada banyak kasus, menampang melintang pasir yang menjadi material pengisi retakan memperlihatkan bahwa baji-baji pasir itu terdeformasi sedemikian rupa sehingga terkontorsi. Sisi atas dari baji-baji pasir itu bahkan tampak menembus lapisan lain yang terletak diatasnya. Kontorsi itu terbentuk ketika material pengisi yang tidak dapat terkompaksi mencoba untuk mengakomodasi dirinya sendiri terhadap kompaksi dan pengurangan ketebalan material dimana baji material pengisi itu berada. Kontorsi itu dapat digunakan untuk melakukan taksiran kuantatif terhadap kompaksi (Shelton, 1962).

Karena terbentuk akibat pengeringan, lekang kerut tidak dapat terbentuk pada pasir murni. Pasir murni tidak mengalami pengurangan volume ketika mengering. Lekang kerut tidak dapat terawetkan; apa yang dapat terawetkan adalah material pengisinya. Karena itu, apa yang sebenarnya terawetkan adalah cast dari lekang kerut. Batuan lempungan yang terlekang-kerutkan biasanya hancur dan hilang, namun keseluruhan sistem retakan dapat terawetkan dalam batupasir yang terletak diatasnya sebagai tonjolan-tonjolan berpuncak lurus yang membentuk suatu sistem jaringan berpola poligonal. Dengan demikian, cast dari lekang kerut itu akan ditemukan pada bidang perlapisan bawah dari batupasir.

Sistem retakan poligonal dinisbahkan pada pengeringan sejalan dengan hilangnya air dari massa lumpur. Secara umum, hal itu mengimplikasikan penyingkapan di permukaan. Walau demikian, sebagian sistem retakan dinisbahkan pada dehidrasi spontan material yang mirip dengan gel. Hal itu dapat terjadi pada lingkungan akuatis. Proses itulah yang digunakan untuk menjelaskan sistem retakan dalam septaria dan nodul rijang (Taliaferro, 1934). Sistem retakan seperti itu disebut synaeresis crack. Synaeresis digunakan untuk menjelaskan retakan-retakan dalam batulumpur tertentu, khususnya batulumpur dengan komposisi yang luar biasa, misalnya batulumpur dolomit (dolomitic mudstone). Secara umum, retakan seperti itu diyakini merupakan gejala khas yang hanya dapat terbentuk pada material yang bentuknya mirip dengan gel (White, 1961; Burst, 1965). Kriteria untuk membedakan lekang kerut biasa dengan synaeresis crack tidak terlalu jelas. Walau demikian, jelas bahwa sistem retakan radial dalam benda noduler memiliki asal-usul yang jauh berbeda dengan jaringan poligonal yang terisi oleh pasir sebagaimana yang dapat ditemukan dalam batulumpur biasa.

Lingkungan yang paling sesuai untuk pembentukan lekang kerut adalah zona interpasut (intertidal zone), danau playa efemeral, dan mud flat di dataran limpah banjir. Barrell (1906) berkeyakinan bahwa kemungkinan terawetkannya lekang kerut yang terbentuk pada tidal flat relatif rendah dan, oleh karena itu, “… lekang kerut mengimplikasikan indikasi satu-satunya dan yang paling meyakinkan asal-usul terestrial untuk sedimen argilit.”

4.5 PERLAPISAN DEFORMASI DAN PERLAPISAN TERGANGGU

Perpindahan massa batuan yang dipicu oleh gaya gravitasi dapat terjadi selama berlangsungnya sedimentasi atau tidak lama setelah sedimentasi berakhir. Deformasi itu mengubah atau menyebabkan terdeformasinya struktur pengendapan. Perlapisan secara khusus dapat terganggu, bahkan terhancurkan akibat proses-proses tersebut. Banyak efek deformasi itu menyebabkan ketidakstabilan yang, pada gilirannya, memicu terjadinya pergerakan di bawah pengaruh gaya gravitasi. Ada tiga situasi yang mungkin muncul. Pada situasi pertama, pergerakan pada dasarnya vertikal, dimana terjadi perpindahan material dengan pola yang mirip dengan konveksi. Proses itu diawali dengan adanya stratifikasi densitas yang tidak stabil dari material penyusun batuan, misalnya saja, akibat diendapkannya lapisan pasir di atas lapisan lumpur atau lanau yang jenuh air. Jika material yang terletak di bawah itu kemudian mengalami transformasi tiksotrofi (thixotrophic transformation), yang disertai penghilangan kekuatan material itu, maka akan terbentuk sederetan sel konveksi yang pada gilirannya menyebabkan terjadinya pergerakan pasir ke arah bawah dan pergerakan lanau atau lempung ke atas (Artyushkov, 1960a, 1960b; Anketell dkk, 1970). Perlu diketahui bahwa pergerakan lanau atau lempung ke atas itu merupakan bentuk reaksi terhadap pergerakan pasir ke arah bawah. Pergerakan-pergerakan vertikal tersebut dapat terjadi dengan lambat, namun dapat pula cepat dan katastrofis.

Pada situasi lain, lereng pengendapan yang sangat curam dapat menjadi tidak stabil. Pergerakan yang dihasilkan oleh curamnya lereng pengendapan sebagian besar memiliki komponen lateral yang besar dan, oleh karena itu, menghasilkan pergerakan material pada arah yang hampir horizontal. Perpindahan seperti itu, apabila berlangsung lambat, disebut rayapan (creep). Apabila cepat, pergerakan itu dinamakan longsor (slide) atau nendat (slump). Proses perpindahan lateral itu sendiri dapat terjadi baik pada lingkungan terestrial maupun lingkungan akuatis.

4.5.1 Struktur Beban dan Struktur Bantal-Guling

Peneraan vertikal berskala kecil dapat menyebabkan terbentuknya struktur beban (load cast) yang telah dijelaskan di atas. Pada kasus ekstrim, dapat terbentuk load pouche atau load ball. Lidah-lidah serpih yang menembus pasir yang terletak diatas-nya menyebabkan terbentuknya struktur lidah api (flame struktur). Pada beberapa kasus, “lidah” serpih itu memperlihatkan pem-balikan ke satu arah, bahkan memperlihatkan pola putaran, seolah-olah terbentuk akibat lateral stress.

Sebagian batupasir, sebagaimana juga sebagian aliran lava di bawah kolom air, memperlihatkan struktur bantal (pillow structure). Dengan adanya struktur itu, pasir tampak sebagai paket-paket yang jumlahnya banyak, terpisah-pisah, dan berbentuk seperti bantal dan guling. Benda seperti itu dapat disebut “nodul semu” (“pseudonodule”) (Macar, 1948) dan “bantal lutut” (“hassock”). Benda itu juga disebut “flow roll” (Sorauf, 1965). Struktur bantal-guling bukan merupakan struktur pengendapan, melainkan struktur deformasi yang terbentuk sebelum lapisan diatasnya diendapkan. Meskipun biasanya ditemukan dalam batupasir tertentu, namun struktur bantal-guling juga ditemukan dalam batugamping tertentu (yakni batugamping yang sebenar-nya merupakan pasir ketika diendapkan).

Struktur bantal-guling biasanya hanya mempengaruhi bagian bawah dari lapisan batuan. Individu-individu bantal dan guling memiliki diameter mulai dari beberapa centimeter hingga lebih dari 1 meter. Benda itu umumnya berbentuk bulat panjang atau elipsoid. Kadang-kadang benda itu berbentuk seperti ginjal, bahkan seperti jamur terbalik. Struktur yang bentuknya mirip dengan mangkok atau struktur cekungan (basinal structure) cembung ke bawah dan dalam banyak kasus sedikit miring, namun tidak rebah. Laminasi yang ada dalam bantal dan guling itu terdeformasi dan lebih kurang sejajar dengan setengah bagian bawah bantal atau guling itu. Bantal dan guling itu sebagian atau seluruhnya terpisahkan dari bantal dan guling lain. Pada bantal dan guling yang benar-benar terpisah dari yang lain, bantal dan guling itu dikelilingi oleh serpih atau lanau yang berasal dari lapisan lain yang berdampingan dengannya.

Bantal dan guling itu jelas bukan konkresi, bukan pula produk pelapukan mengulit bawang (spheroidal weathering). Struktur itu juga bukan merupakan produk nendatan sebagaimana dikemukakan oleh beberapa ahli. Simetri dan orientasi bantal dan guling itu mengimplikasikan terjadi pergerakan vertikal (dalam hal ini pergerakan ke bawah), bukan pergerakan lateral. Kantung pasir yang berbentuk seperti cawan atau ginjal dapat terbentuk akibat tenggelamnya massa pasir ke dalam substrat yang relatif cair seperti yang ditunjukkan melalui percobaan yang dilaksanakan oleh Kuenen (1958). Penelitian lapangan akhir-akhir ini terhadap struktur bantal-guling dalam batuan Devon di New York (Sorauf, 1965) dan tempat lain (Howard & Lohrengel, 1969) mendukung konsep yang menyatakan bahwa struktur bantal-guling terbentuk akibat melesaknya massa pasir ke dalam substrat lumpur; bukan akibat nendatan. Proses itu mungkin berlangsung secara tiba-tiba atau katastrofis.

4.5.2 Synsedimentary Fold dan Synsedimentary Breccia

Sebagaimana telah dikemukakan di atas, sedimen juga dapat dikenai oleh pergerakan-pergerakan yang dipicu oleh gaya gravitasi yang memiliki komponen lateral yang besar. Disini kita hanya akan menujukan perhatian pada deformasi yang terjadi sewaktu sedimen masih berada dalam lingkungan pengendapannya. Dengan demikian, kita tidak akan membahas tentang deformasi tektonik dan deformasi lain yang berlangsung setelah itu. Nendat atau longsor itu menghasilkan lipatan, sesar, dan breksi dalam material yang dikenai oleh gaya. Karena struktur seperti itu juga dapat dihasilkan oleh deformasi tektonik, dan mungkin juga oleh synsedimentary processes lain, kita perlu membahas tentang kriteria yang dapat digunakan untuk membeda-kan deformasi “sedimen lunak” (“soft-sediment” deformation) dari deformasi tektonik. Pembedaan itu pada umumnya tidak sukar untuk dilakukan, namun ada beberapa situasi yang menyebabkan proses pembedaan itu sukar untuk dilaksanakan (Miller, 1922). Struktur yang terbentuk sebelum sedimen terkonsolidasi biasanya hanya terbatas pada lapisan tertentu, bahkan dalam kasus tertentu hanya berlangsung secara terbatas pada lapisan yang tebalnya 1 atau 2 cm. Berbeda dengan lipatan seret (drag fold), struktur itu tidak memiliki kaitan apapun dengan struktur lain yang ukurannya lebih besar atau dengan pola tektonik dimana batuan itu berada. Hal lain yang menjadi pembeda adalah tidak adanya material pengisi urat, baik pada sesar mikro (microfault) maupun pada ruang diantara partikel-partikel breksi. Pada kebanyakan kasus, lipatan yang terbentuk berskala kecil dan umum-nya terpancung atau berakhir pada bidang perlapisan. Hal itu mengindikasikan bahwa lipatan itu pernah terbentuk, namun kemudian tererosi sebelum diendapkannya lapisan yang menindihnya. Semua struktur yang terbentuk sebelum batuannya terkonsolidasi diasumsikan terbentuk oleh komponen gaya gravitasi yang mengarah ke bawah lereng. Jika memang demikian halnya, maka struktur itu menjadi kriterion untuk menentukan arah lereng dan, oleh karena itu, harus diamati dan dipetakan dengan hati-hati. Kebenaan paleogeografi dari struktur-struktur itu telah dipaparkan oleh Kuenen (1952), Murphy & Schlanger (1962), Marschalko (1963), Scott (1966), serta Hubert (1966).

Ada beberapa cara lain yang menyebabkan terbentuknya perlapisan deformasi. Sebagian lipatan sedimen lunak dinisbah-kan pada kandasnya gunung es, terdorongnya pesisir massa es, dsb. Meskipun deformasi sedimen lunak sering ditemukan dalam endapan glaciolacustrine, namun struktur seperti itu juga muncul dalam endapan dimana aksi es sangat tidak mungkin terjadi. Gaya gravitasi sering menghasilkan struktur sedimen lunak.

Perlipatan sedimen lunak sering terjadi pada banyak sedimen. Struktur itu banyak ditemukan dalam paket pasir-serpih yang berlapis tipis. Lipatan nendat (slump fold) dan breksi nendat (slump breccia), di lain pihak, sering ditemukan dalam paket batugamping, terutama yang ada di sekitar terumbu.

Sebagaimana dikemukakan oleh Rich (1950), ada beberapa tipe synsedimentary fold. Salah satu varietas lipatan itu hanya berkembang secara terbatas pada satu lapisan batupasir atau satu lapisan batulanau yang tipis, baik batupasir dan batulanau silikaan maupun batupasir dan batulanau gampingan. Dalam lipatan seperti itu, stratum itu sendiri tidak terlibat; hanya laminasi internalnya saja yang terkontorsi. Struktur yang disebut perlapisan konvolut (convolute bedding) itu memiliki asal-usul yang belum dapat dipastikan, dan mungkin tidak disebabkan oleh nendatan. Hal ini akan dibahas pada bagian lain dari buku ini.

Berbeda dengan perlapisan konvolut, perlipatan nendat biasanya melibatkan lebih dari satu lapisan. Tipe perlipatan itu, yang telah dibahas dengan cukup mendalam oleh Hadding (1931), mempengaruhi banyak lapisan dan agaknya merupakan produk pengaliran massa batuan. Jika proses pengaliran berlangsung cukup lama, maka sebagian lapisan dapat terhancurkan, bahkan semua lapisan dapat terhancurkan sedemikian rupa sehingga akhirnya terbentuk konglomerat semu (pseudoconglomerate) dan breksi. Jika pergerakan terdistribusikan di seluruh bagian massa batuan, maka lapisan-lapisan tipis yang relatif kompeten akan terpecah-pecah menjadi fragmen tidak beraturan yang ukurannya bervariasi. Pada beberapa kasus, fragmen-fragmen itu hanya memperlihatkan sedikit pemisahan dan tidak memperlihatkan rotasi. Pada kasus lain, fragmen-fragmen itu terotasi dan terpilin sehingga bentuknya menjadi seperti kail. Fragmen-fragmen seperti itu dinamakan slump overfold oleh Crowell (1957). Slump overfold dan spiral slump ball itu, atau yang disebut sebagai “struktur bola salju” (“snow ball structure”) oleh Hadding (1931), dapat memberikan petunjuk mengenai arah longsoran. Hasilnya adalah tekstur khaotik yang, bersama-sama dengan kadar air yang tinggi, dapat memiliki mobilitas tinggi dan berevolusi menjadi aliran lumpur dan menyebabkan terbentuknya “pebbly mudstone” (Crowell, 1957) atau tilloid. Endapan itu akan dibahas lebih jauh pada Bab 8.

Pada kasus lain, nendatan menyebabkan terbentuknya perlipatan ketat (tight folding) pada lapisan yang terletak di atas suatu detachment surface. Pergerakan tipe décollement itu, di atas bidang perlapisan bawah, menghasilkan struktur yang mirip dengan nappe. Struktur yang disebut terakhir ini disertai dengan pelemahan, bahkan hiatus, pada detachment area di bagian hulu. Struktur itu sering ditemukan dalam lempung warwa dalam danau proglacial Plistosen (van Straaten, 1949; Fairbridge, 1947).

Endapan nendat dapat demikian tebal dan memiliki penyebaran yang luas. Ksiazkiewicz (1958) pernah menemukan endapan nendat yang tebalnya 55 m. Crowell pernah menemukan lapisan nendat (slump bed) berukuran besar dalam endapan Kapur di California. Sebagian slump sheet cukup tebal untuk dapat dipetakan (Jones, 1937) dan tersebar pada daerah yang luasnya beratus-ratus kilometer persegi. Sebagian besar endapan nendat yang ditemukan dalam rekaman geologi agaknya merupakan endapan bahari.

Nendatan dalam sedimen gampingan tidak jauh berbeda dengan nendatan dalam sedimen klastika. Struktur longsoran (slide structure), yang bervariasi mulai dari kontorsi skala kecil hingga lipatan berskala besar dengan amplitudo 10–15 m serta breksi kasar dengan ketebalan 10–15 m dan menyebar pada wilayah yang luasnya beberapa ratus kilometer persegi, pernah ditemukan dalam batugamping Perm pada Guadalupe Reef complex di New Mexico (Newell dkk, 1953; Rigby, 1958). Breksi batugamping di Pegunungan Alpina berasosiasi dengan graded limestone, atau apa yang disebut sebagai batugamping alodapik (allodapic limestone) oleh Meischner (1964), dinisbahkan oleh Kuenen & Carozzi (1953) pada nendatan dan longsoran pada reef front.

4.5.3 Korok dan Retas Batupasir

Di lapangan kita tidak jarang dapat menemukan korok kecil yang diisi oleh pasir, memotong bidang perlapisan, dengan panjang beberapa centimeter. Sebenarnya itu merupakan lekang kerut yang terisi oleh pasir. Korok itu kemudian bergabung dengan lapisan batupasir yang terletak diatasnya dan, setelah serpih yang terletak di bawah batupasir itu tererosi, tampak sebagai suatu sistem cast dari lekang kerut yang berbentuk poligonal. Itu merupakan struktur sedimen berskala kecil. Namun, jika korok itu memiliki ketebalan beberapa meter dan dapat ditelusuri keberadaannya hingga beberapa ratus meter atau bahkan beberapa ribu meter, “korok” itu sebenarnya merupakan tubuh batuan yang substansial. Korok batupasir, dan retas batupasir yang ber-asosiasi dengannya, akan dibahas panjang lebar pada Bab 5.

4.5.4 Perlapisan Konvolut

Perlapisan konvolut (convolute bedding), yang disebut juga laminasi konvolut (convolute lamination) atau slip bedding, merupakan struktur deformasi yang masih menjadi teka-teki. Rich (1950) menamakan struktur itu sebagai kontorsi intrastrata (intra-stratal contortion). Penamaan seperti itu agaknya lebih sesuai untuk memaparkan fenomena tersebut. Perlapisan konvolut memang merupakan kontorsi intrastrata dan hanya melibatkan laminasi yang ada di bagian dalam suatu lapisan, namun tidak melibatkan bidang perlapisan.

Perlipatan konvolut (convolute folding) agaknya hanya ditemukan dalam lapisan lanau kasar dan pasir halus dengan ketebalan 2–25 cm. Dalam lapisan seperti itu, baik yang disusun oleh material gampingan maupun material silikaan, terdapat himpunan lipatan yang kompleks. Individu-individu laminasi dapat ditelusuri dari satu lipatan ke lipatan lain, meskipun banyak juga ditemukan ketidakselarasan kecil. Secara umum, sinklin cenderung lebar dan berbentuk-U, sedangkan antiklin yang terletak diantara dua sinklin ketat dan memperlihatkan kehadiran puncak lipatan. Lipatan konvolut cenderung menghilang ke atas dan ke bawah lapisan. Pada beberapa kasus, antiklin tampak terpancung oleh erosi.

Distorsi-distorsi tersebut di atas bukan merupakan lipatan biasa karena pola bidang perlapisan tidak memperlihatkan kesinambungan puncak lapisan. Struktur itu merupakan sederetan kubah dan cekungan yang tajam. Pola itu mengindikasikan suatu sistem pergerakan vertikal yang kompleks, bukan displacement lateral. Geometri struktur itu, bersama-sama dengan penyebarannya yang hanya terbatas pada suatu lapisan serta hanya terjadi pada material dengan ukuran tertentu (lanau kasar atau pasir halus), agaknya mengindikasikan bahwa struktur itu terbetnuk akibat internal readjustment material tersebut ketika masih berada dalam keadaan likat atau hampir likat.

Banyak teori diajukan untuk menjelaskan struktur itu (lihat Potter & Pettijohn, 1963) dan agaknya tidak satupun teori itu memuaskan semua pihak. Perlapisan konvolut umumnya berasosiasi dengan lanau dan pasir yang mengandung gelembur, dimana ripple bedding itu sendiri tersungkupkan, bahkan mengalami pembalikan. Hal lain yang masih menjadi permasalahan adalah perbedaan antara perlapisan konvolut yang sebenarnya dengan struktur deformasi lain.

4.6 STROMATOLIT DAN STRUKTUR BIOGENIK LAINNYA

4.6.1 Stromatolit

Istilah stromatolit (stromatolite), yang agaknya berasal dari Bahasa Jerman Stromatolith (digunakan pertama kali oleh Kalkowsky, 1908, h. 68), berarti struktur laminasi dalam sedimen berukuran pasir, lanau, dan lempung yang terbentuk akibat penjebakan dan pengikatan partikel detritus oleh algamat. Istilah stromatolit ganggang (algal stromatolite) mungkin lebih tepat. Secara umum, material partikuler yang diikat oleh ganggang itu merupakan material gampingan, meskipun dapat juga material lain (Davis, 1968). Struktur itu bervariasi, mulai dari laminasi datar, yang perlu diamati secara seksama untuk membedakannya dari laminasi biasa, hingga berbentuk tonjolan kecil dengan ukuran dan derajat kecembungan yang beragam, hingga struktur seperti kolom yang tidak jauh berbeda dengan tumpukan mangkok terbalik, hingga bentuk-bentuk yang memperlihatkan per-cabangan. Selain stromatolit, yang merupakan struktur yang tetap atau terikat, ada juga onkolit (oncolite) yang mobil dan dapat bergerak bebas. Onkolit adalah struktur berornamen yang dilihat sekilas mirip dengan konkresi.

Selain itu ada juga struktur yang memiliki bentuk eksternal dan ukuran yang sama dengan stromatolit setengah-bola (hemispherical stromatolite), namun tidak memiliki laminasi internal. Struktur itu disebut trombolit (thrombolite). Istilah yang disebut terakhir ini diusulkan karena struktur itu memiliki struktur internal yang mirip dengan kumpulan partikel (Aitken, 1967).

Tidak mungkin bagi kita untuk membahas semua lapangan stromatologi (stromatology). Penjelasan yang mendalam tentang struktur ini dapat diperoleh dari karya Hofmann (1969). Setiap ahli sedimentologi hendaknya mengenal perlapisan stromatolit (stromatolitic bedding) dan berbagai bentuk stromatolit-semu yang dihasilkan oleh proses-proses anorganik.

Penggolongan dan tatanama stromatolit tumbuh dengan cepat dan menjadi demikian kompleks. Para peneliti di masa lalu menganggap struktur ini sebagai fosil dan menerapkan nama-nama generik dan spesifik untuk setiap struktur. Waktu itu diperkirakan bahwa stromatolit dihasilkan oleh sekresi organisme dan terbentuk oleh organisme tertentu. Pendapat itu ditentang oleh beberapa ahli dan kemudian muncul konsep baru yang menyatakan bahwa algamat yang bertanggungjawab terhadap pembentukan stromatolit mungkin merupakan suatu kompleks beberapa jenis ganggang biru dan hijau-biru yang bersel satu dan berfilamen. Bentuk dan ukuran suatu stromatolit tergantung pada faktor-faktor lingkungan, bukan pada faktor-faktor genetik. Dengan demikian, nama-nama generik tidak akan sahih digunakan untuk menamakan stromatolit karena nama-nama itu hanya merujuk pada berbagai bentuk yang diasumsikan merupakan akumulasi sedimen yang terjebak dan dipandang tidak berkaitan dengan organisme tertentu. Stromatolit bukan merupakan fosil ganggang. Fosil ganggang berbeda dengan stromatolit (Rezak, 1957) karena fosil ganggang memiliki struktur rangka yang dapat dikenal, misalnya dinding sel dan organ reproduksi, sedangkan stromatolit ganggang merupakan tekstur fragmental yang berlaminasi halus.

Ada beberapa ahli yang mencoba untuk menggolongkan dan menamakan berbagai bentuk pertumbuhan (Hofmann, 1969; Logan dkk, 1964; Maslov, 1953; Aitken, 1967). Stromatolit ganggang bervariasi mulai dari pisolit semu berukuran kecil hingga tonjolan berbentuk biskuit atau bunga kol yang berukruan relatif besar (gambar 4-14). Konkresi-semu yang dinisbahkan pada ganggang berkisar mulai dari benda berbentuk seperti bola dengan diameter 0,5–1,0 cm hingga onkolit yang ukurannya lebih besar, agak pipih, dan memiliki outer coating yang lebih tidak beraturan. Pertumbuhan biasanya tidak sama di setiap sisi, kecuali pada jenjang awal. Pertumbuhan lanjut paling efektif terjadi pada sisi atas dan jika karena suatu hal onkolit itu menggelinding, maka pertumbuhan baru mungkin akan terjadi pada sisi yang berlawanan dengan sisi pertumbuhan pertama. Sebagian pisolit merupakan pisolit komposit. Maksudnya, pisolit itu disusun oleh beberapa benda yang ukurannya lebih kecil dan tumbuh bersama-sama, kemudian terselimuti pada tahap pertumbuhan selanjutnya. Inti dari struktur itu mungkin merupakan zat asing. Pada beberapa kasus, inti itu merupakan sepotong zat ganggang.

Kerak ganggang (algal crust) biasanya mengandung laminasi sederhana dan umumnya merupakan kerak berkerut yang dapat berubah secara berangsur menjadi massa noduler. Kerak itu mungkin hampir datar, pada dasarnya sejajar dengan bidang perlapisan (stromatolit tipe “Weedia”); sedikit melengkung, dengan diameter beberapa centimeter dan tinggi sekitar 1 cm; atau berbentuk setengah bola hingga seperti bunga kol dengan nilai ketinggian yang sama atau lebih besar daripada nilai lebarnya. Beberapa stromatolit berbentuk setengah bola yang lebih besar, dengan diameter beberapa decimeter, dan dapat berubah bentuknya ke atas menjadi struktur seperti bunga kol. Pada kasus lain, kolom atau jari menyebar ke dalam dua atau lebih cabang yang mengarah ke atas.

Sebagian struktur ganggang memperlihatkan pertumbuhan asimetris. Kepala stromatolit tidak membundar, melainkan eliptis; pemanjangan terjadi pada arah yang sejajar dengan sistem arus (Hoffman, 1967). Drapeover lamination juga mencerminkan pertumbuhan asimetris dan tampak lebih tebal pada sisi yang mengarah ke hulu.

Sebagian struktur stromatolit yang kompleks memiliki ukuran yang besar. Individu-individu stromatolit mengolom mungkin tingginya beberapa meter atau lebih. Walau demikian, setiap kolom itu kemungkinan besar tidak memiliki relief lebih dari 1 meter ketika tumbuh. Ketinggian kolom-kolom itu diperoleh akibat pertumbuhan ke atas dari struktur selama berangsungnya sedimentasi. Bioherm ganggang yang berukuran besar, dengan ketebalan hingga sekitar 18 m dan lebar 60 m, pernah ditemukan dalam batugamping Prakambrium (Hoffman, 1969).

Hubungan antara satu kepala stromatolit dengan kepala stromatolit lain, serta dengan sedimen yang ada disekelilingnya, bervariasi. Pada beberapa kasus, laminasi internal dari satu stromatolit dapat ditelusuri hingga mencapai batuan samping dan tampaknya berhubungan dengan kolom stromatolit lain. Pada kasus lain, tidak ada hubungan antara kolom stromatolit dan material antar stromatolit itu merupakan pasir karbonat fragmental. Kepala stromatolit jarang bersifat soliter. Secara umum, kepala stromatolit relatif berdekatan satu sama lain dan bersatu dalam suatu batuan yang dicirikan oleh satu jenis stromatolit.

Istilah trombolit (thrombolite) diusulkan oleh Aitken (1967) untuk menamakan cryptalgal structure yang erat kaitannya dengan stromatolit, namun tidak memperlihatkan laminasi serta dicirikan oleh clotted fabric makroskopis. Dilihat dari bentuk luar dan ukurannya, trombolit mirip dengan stromatolit.

Stromatolit pada dasarnya merupakan perlapisan yang telah terubah—perlapisan yang terubah oleh aktivitas algamat. Di bawah kondisi yang beragam, algamat menghasilkan struktur yang juga beragam. Di bawah mikroskop, satu-satunya struktur yang dapat terlihat adalah laminasi yang sejajar dengan permukaan stromatolit. Laminasi itu umumnya tipis, dengan ketebalan sektiar 1 mm atau kurang, serta ditandai oleh konsentrasi material karbonat atau material rombakan lain. Bahkan partikel lanau kuarsa juga dapat terjebak dalam laminasi itu.

Stromatolit dan struktur lain yang berkaitan dengannya yang dapat ditemukan dalam batugamping Prakambrium hingga resen. Kenampakan yang paling baik, dengan kelimpahan yang jauh lebih tinggi, dapat ditemukan dalam batuan yang relatif tua, khususnya batuan Prakambrium dan Paleozoikum awal. Relatif jarang ditemukannya stromatolit dalam strata Fanerozoikum akhir dinisbahkan pada penghancuran algamat oleh binatang yang bergerak menyusur dasar, misalnya keong, serta peng-hancuran laminasi ganggang oleh organisme pembuat lubang (Garrett, 1970). Diasumsikan bahwa organisme seperti itu belum ada pada Prakambrium serta tidak ada pada waktu-waktu kemudian jika salinitas atau faktor-faktor lingkungan lain menghambat atau menghancurkan biota seperti itu.

Asal-usul stromatolit, sebagai produk aktivitas ganggang, baru dapat dimantapkan pada beberapa tahun belakangan. Black (1933), yang melakukan penelitian di Bahama, adalah orang pertama yang dapat meletakkan dasar-dasar pengetahuan bahwa stromatolit merupakan struktur sedimen organik. Penemuan stromatolit yang terlitifikasi pada masa sekarang di Shark Bay, Australia Barat, menghilangkan keraguan mengenai asal-usul stromatolit sebagai produk aktivitas ganggang (Logan, 1961). Penelitian-penelitian akhir-akhir ini terhadap stromatolit masa kini di Bermuda dan Bahama mampu memberikan detil-detil pengetahuan mengenai perkembangan algamat dan penjebakan sedimen (Gebelein, 1969). Pengamatan-pengamatan terhadap stromatolit, baik stromatolit masa kini maupun stromatolit purba, menunjukkan bahwa strukutr itu terbentuk pada wilayah perairan yang sangat dangkal. Karena kerut-merut yang terlihat pada laminasi ganggang dinisbahkanp ada pengeringan, maka wilayah perairan itu harus sangat dangkal. Karena itu, lingkungan tersebut mungkin berupa lingkungan interpasut (intertidal). Ganggang tampaknya tidak terbatasi baik oleh salinitas maupun temperatur air. Asosiasi yang erat antara stromatolit dengan batugamping berlekang-kerut, flat-pebble conglomerate, dan oolit juga mengindikasikan lingkungan perairan yang sangat dangkal. Ketidaksetangkupan yang diperlihatkan oleh sebagian stromatolit menyebabkan struktur itu dapat berperan sebagai indikator arus purba yang sangat baik. Kecembungan stromatolit ke arah atas juga menjadi sebuah kriterion yang baik untuk menentukan posisi stratigrafi pada paket batuan vertikal atau paket batuan yang telah mengalami pembalikan.

4.6.2 Struktur Biogenik Lain

4.6.2.1 Tinjauan Umum

Setiap ahli sedimentologi hendaknya selalu waspada karena dia mungkin menemukan struktur sedimen yang terbentuk akibat aktivitas organisme, misalnya track, trail, dan lubang galian (burrow). Struktur biogenik (biogenic structures) sering ditemukan dalam beberapa tipe sedimen. Struktur itu muncul pada bidang perlapisan, baik bidang perlapisan atas maupun bidang perlapisan bawah, serta dapat terlihat pada bidang yang tegak lurus terhadap bidang perlapisan.

Meskipun telah diketahui keberadaannya sejak lama, namun pemelajaran yang sistematis terhadap struktur biogenik masih relatif baru. Sebagaimana stromatolit, para peneliti di masa lalu menganggap struktur biogenik sebagai fosil dan kemudian memberikan nama-nama generik dan nama-nama khusus untuk struktur tersebut. Sebagian struktur biogenik bahkan telah keliru disalahtafsirkan sebagai fosil tumbuhan. Berbagai penelitian yang dilakukan akhir-akhir ini berhasil menyingkapkan khuluk yang sebenarnya dari struktur itu serta memperlihatkan bahwa struktur itu, baik geometri maupun ornamentasi mendetilnya, merupa-kan rekaman aktvitias organisme. Beberapa organisme dapat menghasilkan struktur yang sama, padahal organisme-organisme itu tidak memiliki kaitan biologi sama sekali. Pengetahuan yang kita miliki mengenai struktur biogenik banyak diperoleh dari hasil-hasil penelitian terhadap struktur biogenik masa kini sejalan dengan dilakukannya penelitian-penelitian terhadap lingkung-an sedimentasi masa kini. Penelitian-penelitian pionir penting yang berkaitan dengan struktur biogenik dilakukan oleh J. Walther pada suatu stasiun penelitian bahari di Teluk Naples serta oleh Rudolph Richter pada stasiun pengamatan Senckenberg-am-Meer di Laut Utara.

Dalam tulisan ini hanya akan disajikan sebuah ikhtisar yang sangat ringkas mengenai struktur biogenik. Penjelasan yang lebih mendetil mengenai iknofosil (ichnofossil) dapat diperoleh dari karya tulis Abel (1935), Krejci-Graf (1932), Lessertisseur (1955), Häntzschel (1962), Seilacher (1953, 1964a, 1964b), serta Crimes & Harper (1970).

Struktur biogenik berbeda dari fosil tubuh (body fossil) karena tidak akan terombakkan dan terendapkan-ulang. Meskipun struktur biogenik merekam aktivitas tertentu dari suatu binatang, misalnya kebiasaan membuat lubang galian atau cara makan, namun fosil itu terutama sangat bermanfaat untuk menentukan lingkungan dimana organisme itu hidup. Kumpulan “fosil jejak” (“trace fossil”) terbukti merupakan indeks yang sangat baik dari fasies sedimen dan kedalaman (gambar 4-15).

Fosil jejak juga memberikan informasi tentang laju sedimentasi dan merupakan penunjuk kadar racun di dasar suatu wilayah perairan. Fosil jejak juga terbukti sangat membantu dalam menentukan posisi stratigrafi pada lapisan-lapisan yang miring curam atau lapisan-lapisan yang telah terbalik.

4.6.2.2 Penggolongan

Fosil jejak dapat digolongkan dengan beberapa cara. Seilacher (1964a), misalnya saja, mengenal adanya lima kelas fungsional dari fosil jejak berdasarkan tingkah laku organisme pembuatnya. Kelima kelas itu adalah:
Jejak istirahat (resting mark; Ruhrspuren; Cubichnia), yakni jejak dangkal yang dibuat oleh organisme mobil ketika ber-istirahat di dasar perairan.
Jejak rangkakan (crawling trail; Kreichspuren; Repichnia), yakni jejak yang dibuat oleh organisme mobil ketika bergerak secara merangkak di atas massa sedimen.
Jejak perlindungan (residence structure; shelter structure; Wohnbauten; Domichnia), yang pada dasarnya merupakan struktur permanen, biasanya berupa lubang galian yang dibuat oleh organisme mobil atau organisme yang hidupnya agak melekat pada sedimen. Lubang itu dibuat untuk melindungi organisme pembuatnya dari predator atau dari proses pengeruk-an sedimen.
Struktur pencarian makan (feeding structure; Fressbauten; Fodinchnia), yakni lubang galian yang dibuat oleh organisme sesil pemakan sedimen. Struktur itu umumnya memiliki pola radial.
Jejak rayapan (grazing trail; Weidespuren; Pasichnia), umumnya berupa jejak sinusoidal atau lubang galian organisme pemakan lumpur pada atau di bawah bidang batas sedimen-air.

Seseorang juga dapat menggolongkan struktur biogenik berdasarkan hubungannya dengan bidang perlapisan, geometrinya, atau berdasarkan ornamentasi atau struktur internalnya. Sebagian struktur biogenik hanya terbatas pada bidang perlapisan. Hal itu terutama berlaku untuk track dan trail. Bentuk dan pola struktur itu bervariasi, mulai dari jejak istirahat berukuran kecil, yang dibuat oleh organisme yang dapat berenang secara bebas, hingga jejak kaki dinosaurus. Struktur itu juga mencakup lekukan-lekukan menerus dan berkelok-kelok yang dibuat oleh organisme yang merayap di atas sedimen. Banyak jejak istirahat mem-perlihatkan simetri bilateral. Banyak trail juga memperlihatkan sifat bilateral karena binatang yang menghasilkannya memiliki simetri bilateral. Sebagian struktur biogenik bersifat kompleks sebagai hasil pergerakan anggota badan dan ekor.

Jejak rayapan juga merupakan struktur bidang perlapisan yang dengan pola yang beragam. Sebagian diantaranya berupa jejak sinusoidal; sebagian memperlihatkan keteraturan yang mengagumkan; sebagian berbentuk spiral; sebagian memperlihat-kan sinusoitas yang sistematis dan teratur (gambar 4-15), dan sebagian lain memperlihatkan jaringan poligonal (Paleodycton). Secara umum, jejak rayapan hanya terbentuk pada permukaan lumpur dan, oleh karena itu, hanya terawetkan sebagai cast pada bidang perlapisan bawah batulanau atau batupasir halus.

Struktur biogenik lain lebih jelas terlihat pada bidang yang lebih kurang tegak lurus terhadap bidang perlapisan. Sebagian struktur itu berbentuk tabung sederhana, misalnya Skolithus, sedangkan sebagian lain memiliki pola yang lebih kompleks. Banyak diantaranya berupa tabung berbentuk U. Lubang galian dapat tunggal maupun bercabang. Material pengisi lubang galian umumnya memiliki tekstur yang berbeda dengan batuan setempat dan dalam beberapa kasus proses pengisian ber-langsung secara berangsur dan menerus, namun dapat pula tidak berkesinambungan. Lubang galian sudah barang tentu dapat mencapai bidang batas sedimen-fluida. Pada struktur pencarian makanan, jejak-jejak pada bidang perlapisan dapat bersambung dengan lubang galian, biasanya menyebar dari lubang itu. Karenanya, struktur tersebut memiliki komponen lateral maupun komponen vertikal.

Sebagian besar lubang galian juga dapat terletak horizontal pada bidang perlapisan, bahkan dalam tubuh lapisan. Sebagian lubang galian melebar ke dalam hingga jarak sekitar 20 cm atau lebih, dari permukaan. Sebagian lain merupakan lubang galian dangkal.

Lubang galian dapat dikenal pada bidang yang memotong bidang perlapisan oleh perbedaan tekstur material pengisinya serta oleh batuan sampingnya, terutama oleh penghancuran perlapisan yang ditembusnya. Jika lubang galian cukup melimpah, hanya jejak-jejak samar dari bidang perlapisan asli saja yang masih dapat terlihat (Moore & Scrutton, 1957). Batuan itu mungkin “terjungkirbalikkan” atau “terbajak” oleh orgenisme. Bioturbasi (bioturbation) adalah istilah yang dipakai untuk menamakan aksi tersebut, sedangkan istilah bioturbit (bioturbite) digunakan untuk menamakan batuan yang dikenai oleh aksi itu (gambar 4-33).

4.6.2.3 Kebenaan Geologi

Struktur biogenik sangat bermanfaat untuk menentukan urut-urutan stratigrafi dalam paket batuan vertikal atau paket batuan yang telah mengalami pembalikan (Shrock, 1948). Banyak struktur biogenik terawetkan sebagai cast pada bidang perlapisan bawah batupasir.

Struktur biogenik juga dapat memberi petunjuk mengenai laju sedimentasi. Seilacher (1962) memperlihatkan bahwa lapisan-lapisan batupasir dalam sekuen flysch pada dasarnya merupakan endapan seketika. Jika tidak demikian, lubang-lubang galian akan dapat dimulai pada level yang berbeda-beda dari lapisan itu; bukan hanya dimulai dari puncak lapisan. Batupasir pada beberapa “Portege” sequence Devon di Pennsylvania memiliki laminasi yang demikian halus; lapisan lain yang berasosiasi dengannya terbioturbasi. Pasir berlaminasi yang tidak terganggu diendapkan dengan sangat cepat (paling lama hanya beberapa hari), sedangkan lumpur yang banyak dikenai aksi pembuatan lubang diendapkan bertahun-tahun, bahkan mungkin berabad-abad.

Ketidakhadiran lubang galian dan preservasi laminasi tidak selalu mengimplikasikan sedimentasi yang cepat. Hal itu mungkin mengimplikasikan penghambatan kehidupan bentos karena kondisi beracun akibat hadirnya H2S bebas atau akibat tidak adanya oksigen. Kumpulan fosil jejak juga dapat berkorelasi dengan salinitas (Seilacher, 1963).

Aspek paling bermanfaat dari kumpulan fosil jejak adalah sebagai dasar penunjuk fasies. Seilacher (1964a), misalnya saja, mendefinisikan empat fasies yang masing-masing dicirikan oleh kumpulan iknofosil tersendiri. Fasies Nereites, mencirikan cekungan flysch atau cekungan turbidit. Fasies Zoophycus mencirikan lingkungan perairan-dangkal, namun tenang. Fasies Cruziana menempati paparan dangkal. Fasies Skolithus pada dasarnya merupakan fasies pesisir berenergi tinggi. Lingkungan turbidit perairan-dalam (fasies Nereites) terutama dicirikan oleh jejak rayapan. Hal itu berbeda dengan lingkungan pesisir turbulen yang didominasi oleh lubang galian yang dibuat sebagai tempat perlindungan atau lubang galian yang dibuat dalam rangka mencari makanan. Morfologi fosil jejak sudah barang tentu mencerminkan organisme yang bertanggungjawab terhadap pembentukannya serta adaptasi organisme itu terhadap kondisi lingkungan.

Pendeknya, fosil jejak merupakan sebuah alat bantu yang sangat bermanfaat bagi para ahli sedimentologi. Sebagaimana aspek-aspek batuan sedimen yang lain, fosil jejak dapat dipetakan dan digunakan untuk mendefinisikan sabuk-sabuk fasies utama (Farrow, 1966) serta untuk membantu dalam menafsirkan perubahan-perubahan kedalaman (Seilacher, 1967).

4.7 STRUKTUR DIAGENETIK

Ada sekumpulan struktur—konkresi, nodul, dsb—yang terbentuk akibat pelarutan dan presipitasi pasca-pengendapan. Struktur epigenetik itu akan dibahas secara mendetil pada Bab 12.

Browse » Home » Stratigraphy » PENDAHULUAN BIOSTRATIGRAFI
PENDAHULUAN BIOSTRATIGRAFI

Biostratigrafi.

Satuan biostratigrafi adalah tubuh lapisan batuan yang dikenali berdasarkan kandungan fosil atau ciri-ciri paleontologi sebagi sendi pembeda tubuh batuan di sekitarnya. Kelanjutan satuan biostratigrafi ditentukan oleh penyebaran gejala paleontologi yang mencirikannya (Komisi Sandi Stratigrafi Indonesia, 1996).

Satuan dasar biostratigrafi adalah zona. Zona adalah suatu lapisan atau tubuh lapisan batuan yang dicirikan oleh suatu takson atau lebih. Kegunaan dari zona antara lain sebagai penunjuk umur, penunjuk lingkungan pengendapan, korelasi tubuh lapisan batuan, dan untuk mengetahui kedudukan kronostratigrafi tubuh lapisan batuan. Urutan tingkatan satuan biostratigrafi resmi dari besar sampai kecil adalah superzona, zona, subzona dan zonula.

Terdapat empat zona satuan biostratigrafi yang telah ditentukan dalam Sandi Stratigrafi Indonesia (1996), yaitu:

1. Zona selang ( Interval zone ).

Zona selang ialah selang stratigrafi antara dua horizon biostratigrafi (horizon biostratigrafi yaitu awal atau akhir peMunculan takson – takson penciri). Kegunaan secara umum untuk korelasi tubuh – tubuh lapisan batuan. Batas atas dan bawah suatu zona selang ditentukan oleh horizon pemunculan awal atau akhir suatu takson penciri.

2. Zona Puncak ( Acme zone ).

Zona puncak adalah tubuh lapisan batuan yang menunjukkan perkembangan maksimum suatu takson tertentu (pada umumnya perkembangan maksimum adalah junlah maksimum populasi atau takson dan bukan seluruh kisarannya). Kegunaan dalam hal-hal tertentu adalah untuk menunjukkan kedudukan kronostratigrafi tubuh lapisan batuan, juga sebagai penunjuk lingkungan pengendapan. Batas vertikal dan horizontal zona ini bersifat subjektif.

3. Zona Kumpulan ( Asesmblage zone ).

Zona kumpulan adalah kumpulan sejumlah lapisan yang dicirikan oleh kumpulan alamiah fosil yang khas atau kumpulan suatu jenis fosil. Kegunaan zona ini adalah sebagai penunjuk lingkungan pengendapan purba. Batas dan kelanjutan zona kumpulan ditentukan oleh batas terdapatnya kebersamaan (kemasyarakatan) umur – umur utama dalam kesinambungan yang wajar.

4. Zona kisaran ( Range zone ).

Zona kisaran adalah tubuh lapisan batuan yang mencakup kisaran stratigrafi unsur terpilih dari kumpulan seluruh fosil yang ada (zona kisaran dapat berupa kisaran umur suatu takson, kumpulan takson, takson-takson yang bermasyarakat, atau ciri paleontologi yang lain yang menunjukkan kisaran). Kegunaan zona kisaran terutama untuk korelasi tubuh batuan dan sebagai dasar penempatan batuan-batuan dalam skala waktu geologi. Batas dan kelanjutan zona kisaran ditentukan oleh penyebaran vertikal maupun horizontal takson yang mencirikannya.